A065462 Number of inequivalent (ordered) solutions to n^2 = sum of 8 squares of integers >= 0.
1, 1, 2, 3, 5, 8, 11, 18, 25, 36, 51, 73, 90, 133, 169, 223, 295, 380, 452, 603, 763, 903, 1115, 1385, 1668, 2025, 2398, 2811, 3535, 4011, 4683, 5503, 6724, 7316, 8684, 9946, 11844, 12994, 15091, 16712, 20493, 21663, 24975, 27536, 33079, 34654, 39957, 43315
Offset: 0
Keywords
Examples
a(4)=5 because 16 produces {0,0,0,0,0,0,0,4}, {0,0,0,0,2,2,2,2}, {0,0,0,1,1,1,2,3}, {0,1,1,1,1,2,2,2}, {1,1,1,1,1,1,1,3}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
Length/@Table[SumOfSquaresRepresentations[8, (k)^2], {k, 36}]
Extensions
a(0), a(37)-a(47) from Alois P. Heinz, Feb 16 2015