A065465 Decimal expansion of Product_{p prime} (1 - 1/(p^2*(p+1))).
8, 8, 1, 5, 1, 3, 8, 3, 9, 7, 2, 5, 1, 7, 0, 7, 7, 6, 9, 2, 8, 3, 9, 1, 8, 2, 2, 9, 0, 3, 2, 2, 7, 8, 4, 7, 1, 2, 9, 8, 6, 9, 2, 5, 7, 2, 0, 8, 0, 7, 6, 7, 3, 3, 6, 7, 0, 1, 6, 8, 5, 3, 5, 5, 4, 8, 6, 5, 7, 9, 0, 6, 3, 7, 9, 4, 1, 6, 9, 7, 4, 1, 0, 2, 2, 0, 4, 5, 5, 1, 7, 9, 7, 0, 2, 0, 9, 6
Offset: 0
Examples
0.88151383972517077692839182290...
Links
- Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Zeitschr., Vol. 74 (1960), pp. 66-80.
- Steven R. Finch, Class number theory, page 7. [Cached copy, with permission of the author]
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 50 and 85.
- R. J. Mathar, Hardy-Littlewood Constants Embedded into Infinite Products over All Positive Integers, arXiv:0903.2514 [math.NT], 2009-2011, Table 5, constant Q_1^(2).
- G. Niklasch, Some number theoretical constants: 1000-digit values. [Cached copy]
- Simon Plouffe, Generalized expansions of real numbers, 2006.
- Eric Weisstein's World of Mathematics, Quadratic Class Number Constant.
- Eric Weisstein's World of Mathematics, Prime Products.
Programs
-
Mathematica
$MaxExtraPrecision = 1000; digits = 98; terms = 1000; LR = Join[{0, 0, 0}, LinearRecurrence[{-2, -1, 1, 1}, {-3, 4, -5, 3}, terms+10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*PrimeZetaP[n-1]/(n-1), {n, 4, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
-
PARI
prodeulerrat(1 - 1/(p^2*(p+1))) \\ Amiram Eldar, Mar 14 2021
Formula
Sum_{n>=1} phi(n)/(n*J(n)) = (this constant)*A013661 with phi()=A000010() and J() = A007434() [Cohen, Corollary 5.1.1]. - R. J. Mathar, Apr 11 2011
Comments