cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065465 Decimal expansion of Product_{p prime} (1 - 1/(p^2*(p+1))).

Original entry on oeis.org

8, 8, 1, 5, 1, 3, 8, 3, 9, 7, 2, 5, 1, 7, 0, 7, 7, 6, 9, 2, 8, 3, 9, 1, 8, 2, 2, 9, 0, 3, 2, 2, 7, 8, 4, 7, 1, 2, 9, 8, 6, 9, 2, 5, 7, 2, 0, 8, 0, 7, 6, 7, 3, 3, 6, 7, 0, 1, 6, 8, 5, 3, 5, 5, 4, 8, 6, 5, 7, 9, 0, 6, 3, 7, 9, 4, 1, 6, 9, 7, 4, 1, 0, 2, 2, 0, 4, 5, 5, 1, 7, 9, 7, 0, 2, 0, 9, 6
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

From Richard R. Forberg, May 22 2023: (Start)
This constant is the asymptotic mean of (phi(n)/n)*(sigma(n)/n), where phi is the Euler totient function (A000010) and sigma is the sum-of-divisors function (A000203).
In contrast, the product of the separate means, mean(phi(n)/n) * mean(sigma(n)/n), converges to 1, with the asymptotic mean(sigma(n)/n) = Pi^2/6 = zeta(2). See A013661.
Also see A062354. (End)

Examples

			0.88151383972517077692839182290...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 98; terms = 1000; LR = Join[{0, 0, 0}, LinearRecurrence[{-2, -1, 1, 1}, {-3, 4, -5, 3}, terms+10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*PrimeZetaP[n-1]/(n-1), {n, 4, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p^2*(p+1))) \\ Amiram Eldar, Mar 14 2021

Formula

Sum_{n>=1} phi(n)/(n*J(n)) = (this constant)*A013661 with phi()=A000010() and J() = A007434() [Cohen, Corollary 5.1.1]. - R. J. Mathar, Apr 11 2011