A007948 Largest cubefree number dividing n.
1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 4, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 9, 28, 29, 30, 31, 4, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 12, 49, 50, 51, 52, 53, 18, 55, 28, 57, 58, 59, 60, 61, 62, 63, 4, 65, 66, 67, 68, 69, 70, 71, 36, 73
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Henry Bottomley, Some Smarandache-type multiplicative functions.
- Florentin Smarandache, Only Problems, Not Solutions!, 1993.
Programs
-
Haskell
a007948 = last . filter ((== 1) . a212793) . a027750_row -- Reinhard Zumkeller, May 27 2012, Jan 06 2012
-
Mathematica
Table[Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 0 :> p^Min[e, 2]], {n, 73}] (* Michael De Vlieger, Jul 18 2017 *)
-
PARI
a(n) = my(f=factor(n)); for (i=1, #f~, f[i,2] = min(f[i, 2], 2)); factorback(f); \\ Michel Marcus, Jun 09 2014 (Scheme, with memoization-macro definec) (definec (A007948 n) (if (= 1 n) n (* (expt (A020639 n) (min 2 (A067029 n))) (A007948 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017
Formula
Multiplicative with a(p^e) = p^(min(e, 2)). - David W. Wilson, Aug 01 2001
a(n) = max{A212793(A027750(n,k)) * A027750(n,k): k=1..A000005(n)}. - Reinhard Zumkeller, May 27 2012
a(n) = A071773(n)*A007947(n). - observed by Velin Yanev, Aug 20 2017, confirmed by Antti Karttunen, Nov 28 2017
Sum_{k=1..n} a(k) ~ (1/2) * c * n^2, where c = Product_{p prime} (1 - 1/(p^2*(p+1))) = 0.881513... (A065465). - Amiram Eldar, Oct 13 2022
Extensions
More terms from Henry Bottomley, Jun 18 2001
Comments