cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A007948 Largest cubefree number dividing n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 4, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 9, 28, 29, 30, 31, 4, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 12, 49, 50, 51, 52, 53, 18, 55, 28, 57, 58, 59, 60, 61, 62, 63, 4, 65, 66, 67, 68, 69, 70, 71, 36, 73
Offset: 1

Views

Author

R. Muller

Keywords

Crossrefs

Programs

  • Haskell
    a007948 = last . filter ((== 1) . a212793) . a027750_row
    -- Reinhard Zumkeller, May 27 2012, Jan 06 2012
    
  • Mathematica
    Table[Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 0 :> p^Min[e, 2]], {n, 73}] (* Michael De Vlieger, Jul 18 2017 *)
  • PARI
    a(n) = my(f=factor(n)); for (i=1, #f~, f[i,2] = min(f[i, 2], 2)); factorback(f); \\ Michel Marcus, Jun 09 2014
    (Scheme, with memoization-macro definec) (definec (A007948 n) (if (= 1 n) n (* (expt (A020639 n) (min 2 (A067029 n))) (A007948 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017

Formula

Multiplicative with a(p^e) = p^(min(e, 2)). - David W. Wilson, Aug 01 2001
a(n) = max{A212793(A027750(n,k)) * A027750(n,k): k=1..A000005(n)}. - Reinhard Zumkeller, May 27 2012
a(n) = A071773(n)*A007947(n). - observed by Velin Yanev, Aug 20 2017, confirmed by Antti Karttunen, Nov 28 2017
a(n) = n / A062378(n) = n / A003557(A003557(n)). - Antti Karttunen, Nov 28 2017
Sum_{k=1..n} a(k) ~ (1/2) * c * n^2, where c = Product_{p prime} (1 - 1/(p^2*(p+1))) = 0.881513... (A065465). - Amiram Eldar, Oct 13 2022

Extensions

More terms from Henry Bottomley, Jun 18 2001

A092261 Sum of unitary, squarefree divisors of n, including 1.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 1, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 4, 1, 42, 1, 8, 30, 72, 32, 1, 48, 54, 48, 1, 38, 60, 56, 6, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 3, 72, 8, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 1, 74, 114, 4, 20, 96, 168, 80
Offset: 1

Views

Author

Steven Finch, Feb 20 2004

Keywords

Comments

Unitary convolution of the sequence of n*mu^2(n) (absolute values of A055615) and A000012. - R. J. Mathar, May 30 2011

Crossrefs

Programs

  • Mathematica
    Table[Plus @@ Select[Divisors@ n, Max @@ Last /@ FactorInteger@ # == 1 && GCD[#, n/#] == 1 &], {n, 1, 79}] (* Michael De Vlieger, Mar 08 2015 *)
    f[p_, e_] := If[e==1, p+1, 1]; a[1]=1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 79] (* Amiram Eldar, Mar 01 2019 *)
  • PARI
    a(n) = sumdiv(n, d, d*issquarefree(d)*(gcd(d, n/d) == 1)); \\ Michel Marcus, Mar 06 2015
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p^2*X^3 - p*X^2 - p^2*X^2)/(1-X)/(1-p*X))[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
  • Scheme
    ;; This implementation utilizes the memoization-macro definec for which an implementation is available at http://oeis.org/wiki/Memoization#Scheme
    ;; The other functions, A020639, A067029 and A028234 can be found under the respective entries, and should likewise defined with definec:
    (definec (A092261 n) (if (= 1 n) 1 (* (+ 1 (if (> (A067029 n) 1) 0 (A020639 n))) (A092261 (A028234 n))))) ;; Antti Karttunen, Nov 25 2017
    

Formula

Multiplicative with a(p) = p+1 and a(p^e) = 1 for e > 1. - Vladeta Jovovic, Feb 22 2004
From Álvar Ibeas, Mar 06 2015: (Start)
a(n) = a(A055231(n)) = A000203(A055231(n)).
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(1-s) - p^(1-2s)).
(End)
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(A055231(n)).
a(n) = A000203(n) / A295294(n).
a(n) = A048250(n) / A295295(n) = A048250(n) / A048250(A057521(n)), where A057521(n) = A064549(A003557(n)).
(End)
Lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k = Product_{p prime}(1 - 1/(p^2*(p+1))) = 0.881513... (A065465). - Amiram Eldar, Jun 10 2020
Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 + p^(2-3*s) - p^(1-2*s) - p^(2-2*s)). - Vaclav Kotesovec, Aug 20 2021
a(n) = Sum_{d|n, gcd(d,n/d)=1} d * mu(d)^2. - Wesley Ivan Hurt, May 26 2023

A330523 Decimal expansion of Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4).

Original entry on oeis.org

5, 3, 5, 8, 9, 6, 1, 5, 3, 8, 2, 8, 3, 3, 7, 9, 9, 9, 8, 0, 8, 5, 0, 2, 6, 3, 1, 3, 1, 8, 5, 4, 5, 9, 5, 0, 6, 4, 8, 2, 2, 2, 3, 7, 4, 5, 1, 4, 1, 4, 5, 2, 7, 1, 1, 5, 1, 0, 1, 0, 8, 3, 4, 6, 1, 3, 3, 2, 8, 8, 1, 1, 9, 6, 1, 4, 5, 4, 1, 1, 0, 4, 5, 1, 1, 4, 4, 6, 5, 8, 2, 7, 3, 1, 0, 0, 2, 3, 4, 4, 0, 5, 3, 5, 1, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 17 2019

Keywords

Examples

			0.5358961538283379998085026313185459506482223745141452711510108346133288119...
		

Crossrefs

Programs

  • Mathematica
    Do[Print[N[Exp[-Sum[q = Expand[(p^2 + p^3 - p^4)^j]; Sum[PrimeZetaP[Exponent[q[[k]], p]] * Coefficient[q[[k]], p^Exponent[q[[k]], p]], {k, 1, Length[q]}]/j, {j, 1, t}]], 50]], {t, 10, 100, 10}]
  • PARI
    (6/Pi^2) * prodeulerrat(1 - 1/(p^2*(p+1))) \\ Amiram Eldar, Sep 08 2020

Formula

Equals (6/Pi^2) * A065465. - Amiram Eldar, Sep 08 2020

A335275 Numbers k such that the largest square dividing k is a unitary divisor of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76
Offset: 1

Views

Author

Amiram Eldar, Jul 06 2020

Keywords

Comments

Numbers k such that gcd(A008833(k), k/A008833(k)) = 1.
Numbers whose prime factorization contains exponents that are either 1 or even.
Numbers whose powerful part (A057521) is a square.
First differs from A220218 at n = 227: a(227) = 256 is not a term of A220218.
The asymptotic density of this sequence is Product_{p prime} (1 - 1/(p^2*(p+1))) = 0.881513... (A065465).
Complement of A295661. - Vaclav Kotesovec, Jul 07 2020
Differs from A096432 in having or not having 1, 256, 432, 648, 768, 1280, 1728, 1792, 2000, 2160, 2304,... - R. J. Mathar, Jul 22 2020
Equivalently, numbers k whose squarefree part (A007913) is a unitary divisor, or gcd(A007913(k), A008833(k)) = 1. - Amiram Eldar, Oct 09 2022

Examples

			12 is a term since the largest square dividing 12 is 4, and 4 and 12/4 = 3 are coprime.
		

Crossrefs

A000290, A138302 and A220218 are subsequences.

Programs

  • Mathematica
    seqQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # == 1 || EvenQ[#] &];  Select[Range[100], seqQ]
  • PARI
    isok(k) = my(d=k/core(k)); gcd(d, k/d) == 1; \\ Michel Marcus, Jul 07 2020

A367168 The largest unitary divisor of n that is a term of A138302.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2023

Keywords

Comments

First differs from A056192 at n = 32 and from A270418 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), f[i, 1]^f[i, 2], 1));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A367168(n): return prod(p**e for p,e in factorint(n).items() if not(e&-e)^e) # Chai Wah Wu, Nov 10 2023

Formula

Multiplicative with a(p^e) = p^A048298(e).
a(n) <= n, with equality if and only if n is in A138302.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 0.881513... (A065465).

A295661 Numbers with at least one odd exponent larger than one in their prime factorization.

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 72, 88, 96, 104, 108, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 200, 216, 224, 232, 243, 248, 250, 264, 270, 280, 288, 296, 297, 312, 328, 343, 344, 351, 352, 360, 375, 376, 378, 384, 392, 408, 416, 424, 432, 440, 456, 459, 472, 480, 486, 488, 500, 504, 512, 513, 520, 536, 540
Offset: 1

Views

Author

Antti Karttunen, Nov 28 2017

Keywords

Comments

The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 1/(p^2*(p+1))) = 0.1184861602... (= 1 - A065465). - Amiram Eldar, May 18 2022

Crossrefs

Positions of nonzero terms in A295662 and A295663.
Subsequence of A046099 (64 = 2^6, although a cube, is not in this sequence).
Differs from A060476 (256 = 2^8 is not a member of this sequence).
Complement of A335275.
Cf. A065465.

Programs

A371242 The sum of the unitary divisors of n that are cubefree numbers (A004709).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 1, 10, 18, 12, 20, 14, 24, 24, 1, 18, 30, 20, 30, 32, 36, 24, 4, 26, 42, 1, 40, 30, 72, 32, 1, 48, 54, 48, 50, 38, 60, 56, 6, 42, 96, 44, 60, 60, 72, 48, 4, 50, 78, 72, 70, 54, 3, 72, 8, 80, 90, 60, 120, 62, 96, 80, 1, 84, 144, 68, 90, 96
Offset: 1

Views

Author

Amiram Eldar, Mar 16 2024

Keywords

Comments

The number of these divisors is A365498(n).

References

  • D. Suryanarayana, The number and sum of k-free integers <= x which are prime to n, Indian J. Math., Vol. 11 (1969), pp. 131-139.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, p^e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] < 3, f[i, 1]^f[i, 2] + 1, 1));}

Formula

Multiplicative with a(p^e) = p^e + 1 for e <= 2, and a(p^e) = 1 for e >= 3.
a(n) = 1 if and only if n is cubefull (A036966).
a(n) = A000203(n) if and only if n is squarefree (A005117).
a(n) <= A034448(n), with equality if and only if n is cubefree.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-2) - 1/p^(2*s-1) - 1/p^(3*s-2)).
Sum_{j=1..n} a(j) ~ c * n^2 / 2, where c = Product_{p prime} (1 - 1/p^3 + 1/(p^2 + p)) = 1.16545286600957717104.... .
In general, the formula above holds for the sum of unitary divisors of n that are k-free numbers (k >= 2) with c = Product_{p prime} (1 - 1/p^k + 1/(p^2 + p)) (Suryanarayana, 1969). If k = 2 then c = A065465. In the limit when k -> oo, c = A306633.

A360522 a(n) = Sum_{d|n} Max({d'; d'|n, gcd(d, d') = 1}).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 11, 11, 18, 12, 24, 14, 24, 24, 20, 18, 33, 20, 36, 32, 36, 24, 44, 27, 42, 30, 48, 30, 72, 32, 37, 48, 54, 48, 66, 38, 60, 56, 66, 42, 96, 44, 72, 66, 72, 48, 80, 51, 81, 72, 84, 54, 90, 72, 88, 80, 90, 60, 144, 62, 96, 88, 70, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

a(n) is the sum of delta_d(n) over the divisors d of n, where delta_d(n) is the greatest divisor of n that is relatively prime to n.
Denoted by Sur(n) in Khan (2005).
Related sequences: A048691(n) = Sum_{d|n} #{d'; d' | n, gcd(d, d') = 1}, and A328485(n) = Sum_{d|n} Sum_{d' | n, gcd(d, d') = 1} d' (number and sum of divisors instead of maximal divisor, respectively).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e + e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,2]);}

Formula

Multiplicative with a(p^e) = p^e + e.
Dirichlet g.f.: zeta(s-1)*zeta(s)^2 * Product_{p prime} (1 - 1/p^s - 1/p^(2*s-1) + 1/p^(2*s)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = A072691 * A065465 = A152649 * A330523 = 0.7250160726810604158... .
a(n) <= A000203(n) with equality if and only if n is squarefree (A005117).
limsup_{n->oo} sigma(n)/a(n) = oo, where sigma(n) is the sum of divisors of n (A000203) (Khan, 2002).
liminf_{n->oo} a(n)/usigma(n) = 1, where usigma(n) is the sum of unitary divisors of n (A034448) (Khan, 2005).
limsup_{n->oo} a(n)/usigma(n) = (55/54) * Product_{p prime} (1 + 1/(p^2+1)) = 1.4682298236... (Khan, 2005).

A069249 a(n) = n^2 - phi(n)*sigma(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 12, 1, 4, 3, 28, 1, 32, 1, 52, 33, 8, 1, 90, 1, 64, 57, 124, 1, 96, 5, 172, 9, 112, 1, 324, 1, 16, 129, 292, 73, 204, 1, 364, 177, 160, 1, 612, 1, 256, 153, 532, 1, 320, 7, 640, 297, 352, 1, 756, 145, 256, 369, 844, 1, 912, 1, 964, 225, 32, 193, 1476, 1, 592
Offset: 1

Views

Author

Benoit Cloitre, Apr 13 2002

Keywords

Comments

Always >0 for n>0. a(n)=1 if n is prime.
If p is a prime and k is a natural number then a(p^k)=p^(k-1) because a(p^k)=(p^k)^2-sigma(p^k)*phi(p^k) =p^(2k)-(p-1)*p^(k-1)*(p^(k+1)-1)/(p-1)=p^(k-1). If n is a composite number then a(n)>1 and a(1)=0, so n is prime iff a(n)=1. - Farideh Firoozbakht, Nov 15 2005

Examples

			sigma(10) = 18; phi(10) = 4; 10^2 - sigma(10)*phi(10) = 28. sigma(p) = p+1; phi(p) = p-1; p^2 - (p+1)(p-1) = 1. [From _Walter Nissen_, Aug 29 2009]
		

Crossrefs

Programs

Formula

a(n) = n^2-A062354(n). - R. J. Mathar, Oct 01 2011
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 1 - A065465 = 0.118486... . - Amiram Eldar, Dec 04 2023

A366762 Numbers whose canonical prime factorization contains only exponents which are congruent to 1 modulo 3.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102
Offset: 1

Views

Author

Amiram Eldar, Oct 21 2023

Keywords

Comments

First differs from A274034 at n = 42, and from A197680 and A361177 at n = 84.
The asymptotic density of this sequence is zeta(3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A002117 * A330523 = A253905 * A065465 = 0.644177671086029533405... .

Crossrefs

Similar sequences with exponents of a given form: A000290 (2*k), A268335 (2*k+1), A000578 (3*k), A182120 (3*k+2).

Programs

  • Mathematica
    q[n_] := AllTrue[FactorInteger[n][[;; , 2]], Mod[#, 3] == 1 &]; Select[Range[120], q]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2]%3 != 1, return(0))); 1;}

Formula

Sum_{n>=1} 1/a(n)^s = zeta(3*s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)), for s > 1.
Showing 1-10 of 32 results. Next