A073184 Number of cubefree divisors of n.
1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 3, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 3, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 6, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 3, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 6, 3, 4, 2, 12, 4, 4, 4, 6, 2, 12, 4, 6, 4, 4, 4, 6, 2, 6, 6, 9, 2, 8, 2
Offset: 1
Examples
The divisors of 56 are {1, 2, 4, 7, 8, 14, 28, 56}, 8=2^3 and 56=7*2^3 are not cubefree, therefore a(56) = 6.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a073184 = sum . map a212793 . a027750_row -- Reinhard Zumkeller, May 27 2012
-
Mathematica
a[1] = 1; a[p_?PrimeQ] = 2; a[n_] := Times @@ (If[#[[2]] == 1, 2, 3] & /@ FactorInteger[n]); Table[a[n], {n, 1, 103}] (* Jean-François Alcover, May 24 2012, after Christian G. Bower *)
-
PARI
a(n) = {my(e = factor(n)[,2]); prod(i = 1, #e, if(e[i] == 1, 2, 3))}; \\ Amiram Eldar, Oct 08 2022
Formula
a(n) <= A073182(n).
Dirichlet g.f.: zeta(s)^2/zeta(3*s). Dirichlet convolution of the characteristic function of cubefree numbers by A000012. - R. J. Mathar, Apr 12 2011
Sum_{k=1..n} a(k) ~ n / zeta(3) * (log(n) - 1 + 2*gamma - 3*zeta'(3)/zeta(3)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 31 2019
Comments