cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A212172 Row n of table represents second signature of n: list of exponents >= 2 in canonical prime factorization of n, in nonincreasing order, or 0 if no such exponent exists.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Matthew Vandermast, Jun 03 2012

Keywords

Comments

Length of row n equals A056170(n) if A056170(n) is positive, or 1 if A056170(n) = 0.
The multiset of exponents >=2 in the prime factorization of n completely determines a(n) for over 20 sequences in the database (see crossreferences). It also determines the fractions A034444(n)/A000005(n) and A037445(n)/A000005(n).
For squarefree numbers, this multiset is { } (the empty multiset). The use of 0 in the table to represent each n with no exponents >=2 in its prime factorization accords with the usual OEIS practice of using 0 to represent nonexistent elements when possible. In comments, the second signature of squarefree numbers will be represented as { }.
For each second signature {S}, there exist values of j and k such that, if the second signature of n is {S}, then A085082(n) is congruent to j modulo k. These values are nontrivial unless {S} = { }. Analogous (but not necessarily identical) values of j and k also exist for each second signature with respect to A088873 and A181796.
Each sequence of integers with a given second signature {S} has a positive density, unlike the analogous sequences for prime signatures. The highest of these densities is 6/Pi^2 = 0.607927... for A005117 ({S} = { }).

Examples

			First rows of table read: 0; 0; 0; 2; 0; 0; 0; 3; 2; 0; 0; 2;...
12 = 2^2*3 has positive exponents 2 and 1 in its canonical prime factorization (1s are often left implicit as exponents). Since only exponents that are 2 or greater appear in a number's second signature, 12's second signature is {2}.
30 = 2*3*5 has no exponents greater than 1 in its prime factorization. The multiset of its exponents >= 2 is { } (the empty multiset), represented in the table with a 0.
72 = 2^3*3^2 has positive exponents 3 and 2 in its prime factorization, as does 108 = 2^2*3^3. Rows 72 and 108 both read {3,2}.
		

Crossrefs

A181800 gives first integer of each second signature. Also see A212171, A212173-A212181, A212642-A212644.
Functions determined by exponents >=2 in the prime factorization of n:
Additive: A046660, A056170.
Other: A007424, A051903 (for n > 1), A056626, A066301, A071325, A072411, A091050, A107078, A185102 (for n > 1), A212180.
Sequences that contain all integers of a specific second signature: A005117 (second signature { }), A060687 ({2}), A048109 ({3}).

Programs

  • Magma
    &cat[IsEmpty(e)select [0]else Reverse(Sort(e))where e is[pe[2]:pe in Factorisation(n)|pe[2]gt 1]:n in[1..102]]; // Jason Kimberley, Jun 13 2012
  • Mathematica
    row[n_] := Select[ FactorInteger[n][[All, 2]], # >= 2 &] /. {} -> 0 /. {k__} -> Sequence[k]; Table[row[n], {n, 1, 100}] (* Jean-François Alcover, Apr 16 2013 *)

Formula

For nonsquarefree n, row n is identical to row A057521(n) of table A212171.

A358260 a(n) is the number of infinitary square divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 06 2022

Keywords

Comments

First differs from A007424 at n = 36, from A323308 at n = 64, and from A278908 and A307848 at n = 128.

Crossrefs

Similar sequences: A046951, A056624, A056626.
Sequences with the same initial terms: A007424, A278908, A307848, A323308.

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[If[OddQ[e], e - 1, e], 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, 2^hammingweight(if(f[i,2]%2, f[i,2]-1, f[i,2])))};

Formula

Multiplicative with a(p^e) = 2^A000120(e) if e is even, and 2^A000120(e-1) if e is odd.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} ((1-1/p) * Sum_{k>=1} a(p^k)/p^k) = 1.55454884667440993654... .

A369163 a(n) = A000005(A000688(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 15 2024

Keywords

Comments

First differs from A007424, A278908, A307848, A323308, A358260 and A365549 at n = 36.
The sums of the first 10^k terms, for k = 1, 2, ..., are 13, 143, 1486, 15054, 151067, 1511982, 15123465, 151245456, 1512484372, 15124927227, ... . From these values the asymptotic mean of this sequence, whose existence was proven by Ivić (1983) (see the Formula section), can be empirically evaluated by 1.512... .

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 73.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, FiniteAbelianGroupCount[n]], {n, 1, 100}]
  • PARI
    a(n) = numdiv(vecprod(apply(numbpart, factor(n)[, 2])));

Formula

Sum_{k=1..n} a(k) = c * n + O(sqrt(n) * log(n)^4), where c = Sum_{k>=1} d(k) * A000005(k) is a constant, d(k) is the asymptotic density of the set {m | A000688(m) = k} (e.g., d(1) = A059956, d(2) = A271971, d(3) appears in A048109) (Ivić, 1983).

A372601 The maximal exponent in the prime factorization of the largest exponentially odd divisor of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, May 07 2024

Keywords

Comments

First differs from A331273 at n = 64.
Differs from A363332 at n = 1, 216, 432, 648, 864, 1000, ... .

Crossrefs

Programs

  • Mathematica
    f[n_] := n - If[EvenQ[n], 1, 0]; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
  • PARI
    s(n) = (n+1) \ 2 * 2 - 1;
    a(n) = if(n>1, s(vecmax(factor(n)[,2])), 0);

Formula

a(n) = A051903(A350390(n)).
a(n) = A109613(A051903(n)-1) for n >= 2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + 2 * Sum_{i>=1} (1 - (1/zeta(2*i+1))) = 1.42929441950714075659... .

A372602 The maximal exponent in the prime factorization of the largest square dividing n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, May 07 2024

Keywords

Crossrefs

Similar sequences: A007424, A368781, A372601, A372603, A372604.

Programs

  • Mathematica
    f[n_] := 2 * Floor[n/2]; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
  • PARI
    s(n) = n \ 2 * 2;
    a(n) = if(n>1, s(vecmax(factor(n)[,2])), 0);

Formula

a(n) = A051903(A008833(n)).
a(n) = A052928(A051903(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 * Sum_{i>=1} (1 - (1/zeta(2*i))) = 0.98112786070359477197... .

A372603 The maximal exponent in the prime factorization of the powerful part of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, May 07 2024

Keywords

Comments

First differs from A275812 at n = 36, and from A212172 at n = 37.

Crossrefs

Programs

  • Mathematica
    f[n_] := If[n == 1, 0, n]; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
  • PARI
    s(n) = if(n == 1, 0, n);
    a(n) = if(n>1, s(vecmax(factor(n)[,2])), 0);

Formula

a(n) = A051903(A057521(n)).
a(n) = A087156(A051903(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 - 1/zeta(2) + Sum_{i>=2} (1 - 1/zeta(i)) = A033150 - A059956 = 1.09728403825134113562... .

A368978 The number of bi-unitary divisors of n that are squares (A000290).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Comments

First differs from A007424, A278908, A307848, A323308, A358260 and A365549 at n = 32.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (e + 1)/2, 2*Floor[(e+2)/4]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, (x+1)/2, 2*((x+2)\4)), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = (e + 1)/2 if e is odd, and 2*floor((e+2)/4) if e is even.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A286324(n), with equality if and only if n is in A062503.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 1/p^2 - 1/p^4 + 1/p^5) = 1.58922450321701775833... .

A372604 The maximal exponent in the prime factorization of the largest divisor of n whose number of divisors is a power of 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, May 07 2024

Keywords

Comments

First differs from A331273 at n = 32.
Differs from A368247 at n = 1, 128, 216, 256, 384, 432, 512, ... .
All the terms are of the form 2^k-1 (A000225).

Examples

			4 has 3 divisors, 1, 2 and 4. The number of divisors of 4 is 3, which is not a power of 2. The number of divisors of 2 is 2, which is a power of 2. Therefore, A372379(4) = 2 and a(4) = A051903(2) = 1.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := 2^Floor[Log2[n + 1]] - 1; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
  • PARI
    s(n) = 2^exponent(n+1) - 1;
    a(n) = if(n>1, s(vecmax(factor(n)[,2])), 0);

Formula

a(n) = A051903(A372379(n)).
a(n) = A092323(A051903(n)+1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum_{i>=1} 2^i * (1 - 1/zeta(2^(i+1)-1)) = 1.36955053734097783559... .

A380398 The number of unitary divisors of n that are perfect powers (A001597).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 23 2025

Keywords

Comments

First differs from A368978 at n = 32, from A007424 and A369163 at n = 36, from A278908, A307848, A358260 and A365549 at n = 64, and from A323308 at n = 72.
a(n) depends only on the prime signature of n (A118914).
The record values are 2^k, for k = 0, 1, 2, ..., and they are attained at A061742(k).
The sum of unitary divisors of n that are perfect powers is A380400(n).

Examples

			a(4) = 2 since 4 have 2 unitary divisors that are perfect powers, 1 and 4 = 2^2.
a(72) = 3 since 72 have 3 unitary divisors that are perfect powers, 1, 8 = 2^3, and 9 = 3^2.
		

Crossrefs

Programs

  • Mathematica
    ppQ[n_] := n == 1 || GCD @@ FactorInteger[n][[;; , 2]] > 1; a[n_] := DivisorSum[n, 1 &, CoprimeQ[#, n/#] && ppQ[#] &]; Array[a, 100]
  • PARI
    a(n) = sumdiv(n, d, gcd(d, n/d) == 1 && (d == 1 || ispower(d)));

Formula

a(n) = Sum_{d|n, gcd(d, n/d) == 1} [d in A001597], where [] is the Iverson bracket.
a(n) = A091050(n) - A380399(n).
a(n) = 1 if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 - Sum_{k>=2} mu(k)*(zeta(k)/zeta(k+1) - 1) = 1.49341326536904597349..., where mu is the Moebius function (A008683).

A375847 The maximum exponent in the prime factorization of the largest unitary cubefree divisor of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 0, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Aug 31 2024

Keywords

Crossrefs

Cf. A007424 (analogous with the largest cubefree divisor, for n >= 2).

Programs

  • Mathematica
    a[n_] := Max[Join[{0}, Select[FactorInteger[n][[;; , 2]], # <= 2 &]]]; a[1] = 0; Array[a, 100]
  • PARI
    a(n) = {my(e = select(x -> x <= 2, factor(n)[,2])); if(#e == 0, 0, vecmax(e));}

Formula

a(n) = A051903(A360539(n)).
a(n) = 0 if and only if n is cubefull (A036966).
a(n) = 1 if and only if n is in A337050 \ A036966.
a(n) = 2 if and only if n is in A038109.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 - A330596 = 1.25146474031763643535... .
Showing 1-10 of 10 results.