A212180 Number of distinct second signatures (cf. A212172) represented among divisors of n.
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3
Offset: 1
Keywords
Examples
The divisors of 72 represent a total of 5 distinct second signatures (cf. A212172), as can be seen from the exponents >= 2, if any, in the canonical prime factorization of each divisor: { }: 1, 2 (prime), 3 (prime), 6 (2*3) {2}: 4 (2^2), 9 (3^2), 12 (2^2*3), 18 (2*3^2) {3}: 8 (2^3), 24 (2^3*3) {2,2}: 36 (2^2*3^2) {3,2}: 72 (2^3*3^2) Hence, a(72) = 5.
Links
Programs
-
Mathematica
Array[Length@ Union@ Map[Sort@ Select[FactorInteger[#][[All, -1]], # >= 2 &] &, Divisors@ #] &, 88] (* Michael De Vlieger, Jul 19 2017 *)
-
PARI
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); } \\ This function from Charles R Greathouse IV, Aug 13 2013 A212173(n) = A046523(A057521(n)); A212180(n) = { my(vals = Set()); fordiv(n, d, vals = Set(concat(vals, A212173(d)))); length(vals); }; \\ Antti Karttunen, Jul 19 2017
-
Python
from sympy import factorint, divisors, prod def P(n): return sorted(factorint(n).values()) def a046523(n): x=1 while True: if P(n)==P(x): return x else: x+=1 def a057521(n): return 1 if n==1 else prod(p**e for p, e in factorint(n).items() if e != 1) def a212173(n): return a046523(a057521(n)) def a(n): l=[] for d in divisors(n): x=a212173(d) if not x in l:l+=[x, ] return len(l) print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 19 2017
Comments