cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A212180 Number of distinct second signatures (cf. A212172) represented among divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3
Offset: 1

Views

Author

Matthew Vandermast, Jun 04 2012

Keywords

Comments

Completely determined by the exponents >=2 in the prime factorization of n (cf. A212172, A212173).
The fraction of the divisors of n which have a given second signature {S} is also a function of n's second signature. For example, if n has second signature {3,2}, it follows that 1/3 of n's divisors are squarefree. Squarefree numbers are represented with 0's in A212172, in accord with the usual OEIS custom of using 0 for nonexistent elements; in comments, their second signature is represented as { }.

Examples

			The divisors of 72 represent a total of 5 distinct second signatures (cf. A212172), as can be seen from the exponents >= 2, if any, in the canonical prime factorization of each divisor:
{ }: 1, 2 (prime), 3 (prime), 6 (2*3)
{2}: 4 (2^2), 9 (3^2), 12 (2^2*3), 18 (2*3^2)
{3}: 8 (2^3), 24 (2^3*3)
{2,2}: 36 (2^2*3^2)
{3,2}: 72 (2^3*3^2)
Hence, a(72) = 5.
		

Crossrefs

Programs

  • Mathematica
    Array[Length@ Union@ Map[Sort@ Select[FactorInteger[#][[All, -1]], # >= 2 &] &, Divisors@ #] &, 88] (* Michael De Vlieger, Jul 19 2017 *)
  • PARI
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); } \\ This function from Charles R Greathouse IV, Aug 13 2013
    A212173(n) = A046523(A057521(n));
    A212180(n) = { my(vals = Set()); fordiv(n, d, vals = Set(concat(vals, A212173(d)))); length(vals); }; \\ Antti Karttunen, Jul 19 2017
    
  • Python
    from sympy import factorint, divisors, prod
    def P(n): return sorted(factorint(n).values())
    def a046523(n):
        x=1
        while True:
            if P(n)==P(x): return x
            else: x+=1
    def a057521(n): return 1 if n==1 else prod(p**e for p, e in factorint(n).items() if e != 1)
    def a212173(n): return a046523(a057521(n))
    def a(n):
        l=[]
        for d in divisors(n):
            x=a212173(d)
            if not x in l:l+=[x, ]
        return len(l)
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 19 2017

A212642 a(n) = number of distinct prime signatures represented among divisors of A181800(n) (n-th powerful number that is the first integer of its prime signature).

Original entry on oeis.org

1, 3, 4, 5, 6, 6, 7, 9, 8, 12, 10, 9, 15, 14, 10, 18, 18, 10, 11, 21, 15, 22, 16, 12, 24, 20, 26, 22, 13, 27, 25, 19, 30, 28, 21, 14, 30, 30, 28, 34, 34, 27, 15, 33, 35, 37, 20, 38, 40, 33, 31, 16, 36, 40, 46, 15, 28, 30, 42, 46, 39, 43, 17, 39, 45, 55, 25, 35
Offset: 1

Views

Author

Matthew Vandermast, Jun 05 2012

Keywords

Comments

Also, number of divisors of A181800 that are members of A025487.
Consider a member of A181800 with second signature {S} whose divisors represent a total of k distinct second signatures and a total of (j+k) distinct prime signatures. Let n be any integer with second signature {S}. Then A212180(n) = k and A085082(n) is congruent to j modulo k. Cf. A212643, A212644.

Examples

			The divisors of 36 represent a total of 6 distinct prime signatures (cf. A085082), as can be seen from the positive exponents, if any, in the canonical prime factorization of each divisor:
{ }: 1 (multiset of positive exponents is the empty multiset)
{1}: 2 (2^1), 3 (3^1)
{1,1}: 6 (2^1*3^1)
{2}: 4 (2^2), 9 (3^2),
{2,1}: 12 (2^2*3^1), 18 (2^1*3^2)
{2,2}: 36 (2^2*3^2)
Since 36 = A181800(6), a(6) = 6.
		

Crossrefs

Formula

a(n) = A085082(A181800(n)).

A212644 If an integer's second signature (cf. A212172) is the n-th to appear among positive integers, a(n) = number of distinct second signatures represented among its divisors.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 6, 5, 7, 7, 6, 8, 9, 9, 9, 11, 12, 4, 10, 13, 10, 15, 7, 11, 15, 14, 18, 10, 12, 17, 18, 9, 21, 13, 15, 13, 19, 22, 14, 24, 16, 20, 14, 21, 26, 19, 10, 27, 19, 25, 16, 15, 23, 30, 24, 5, 21, 16, 30, 22, 30, 23, 16, 25, 34, 29, 9, 27, 22, 33
Offset: 1

Views

Author

Matthew Vandermast, Jun 07 2012

Keywords

Comments

Also, number of divisors of A181800(n) that are members of A181800.
Consider a member of A181800 with second signature {S} whose divisors represent a total of k distinct second signatures and a total of (j+k) distinct prime signatures (cf. A212642). Let m be any integer with second signature {S}. Then A212180(m) = k and A085082(m) is congruent to j modulo k. If {S} is the second signature of A181800(n), then A085082(m) is congruent to A212643(n) modulo a(n).

Examples

			The divisors of 72 represent 5 distinct second signatures (cf. A212172), as can be seen from the exponents >=2, if any, in the canonical prime factorization of each divisor:
{ }: 1, 2 (prime), 3 (prime), 6 (2*3)
{2}: 4 (2^2), 9 (3^2), 12 (2^2*3), 18 (2*3^2)
{3}: 8 (2^3), 24 (2^3*3)
{2,2}: 36 (2^2*3^2)
{3,2}: 72 (2^3*3^2)
Since 72 = A181800(8), a(8) = 5.
		

Crossrefs

Formula

a(n) = A212180(A181800(n)).

Extensions

Data corrected by Amiram Eldar, Jul 14 2019
Showing 1-3 of 3 results.