A007947
Largest squarefree number dividing n: the squarefree kernel of n, rad(n), radical of n.
Original entry on oeis.org
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 2, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38, 77, 78
Offset: 1
G.f. = x + 2*x^2 + 3*x^3 + 2*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 2*x^8 + 3*x^9 + ... - _Michael Somos_, Jul 15 2018
- Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 10000 terms from T. D. Noe)
- Masum Billal, Divisible Sequence and its Characteristic Sequence, arXiv:1501.00609 [math.NT], 2015, theorem 11 page 5.
- Henry Bottomley, Some Smarandache-type multiplicative sequences
- Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
- Jarosław Grytczuk, Thue type problems for graphs, points and numbers, Discrete Math., 308 (2008), 4419-4429.
- Neville Holmes, Integer Sequences [Broken link]
- Serge Lang, Old and New Conjectured Diophantine Inequalities, Bull. Amer. Math. Soc., 23 (1990), 37-75. see p. 39.
- Wolfdieter Lang, Cantor's List of Real Algebraic Numbers of Heights 1 to 7, arXiv:2307.10645 [math.NT], 2023.
- D. H. Lehmer, Euler constants for arithmetical progressions, Collection of articles in memory of Juriĭ Vladimirovič Linnik. Acta Arith. 27 (1975), 125--142. MR0369233 (51 #5468). See N_k on page 131.
- Ivar Peterson, The Amazing ABC Conjecture
- Paul Tarau, Emulating Primality with Multiset Representations of Natural Numbers, in Theoretical Aspects of Computing, ICTAC 2011, Lecture Notes in Computer Science, 2011, Volume 6916/2011, 218-238
- Paul Tarau, Towards a generic view of primality through multiset decompositions of natural numbers, Theoretical Computer Science, Volume 537, 5 June 2014, Pages 105-124.
- Wikipedia, Radical of an integer.
More general factorization-related properties, specific to n:
A020639,
A028234,
A020500,
A010051,
A284318,
A000005,
A001221,
A005361,
A034444,
A014963,
A128651,
A267116.
A003961,
A059896 are used to express relationship between terms of this sequence.
-
a007947 = product . a027748_row -- Reinhard Zumkeller, Feb 27 2012
-
[ &*PrimeDivisors(n): n in [1..100] ]; // Klaus Brockhaus, Dec 04 2008
-
with(numtheory); A007947 := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := mul(t1[i][1],i=1..nops(t1)); end;
A007947 := n -> ilcm(op(numtheory[factorset](n))):
seq(A007947(i),i=1..69); # Peter Luschny, Mar 22 2011
A:= n -> convert(numtheory:-factorset(n),`*`):
seq(A(n),n=1..100); # Robert Israel, Aug 10 2014
seq(NumberTheory:-Radical(n), n = 1..78); # Peter Luschny, Jul 20 2021
-
rad[n_] := Times @@ (First@# & /@ FactorInteger@ n); Array[rad, 78] (* Robert G. Wilson v, Aug 29 2012 *)
Table[Last[Select[Divisors[n],SquareFreeQ]],{n,100}] (* Harvey P. Dale, Jul 14 2014 *)
a[ n_] := If[ n < 1, 0, Sum[ EulerPhi[d] Abs @ MoebiusMu[d], {d, Divisors[ n]}]]; (* Michael Somos, Jul 15 2018 *)
Table[Product[p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 20 2020 *)
-
a(n) = factorback(factorint(n)[,1]); \\ Andrew Lelechenko, May 09 2014
-
for(n=1, 100, print1(direuler(p=2, n, (1 + p*X - X)/(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
-
from sympy import primefactors, prod
def a(n): return 1 if n < 2 else prod(primefactors(n))
[a(n) for n in range(1, 51)] # Indranil Ghosh, Apr 16 2017
-
def A007947(n): return mul(p for p in prime_divisors(n))
[A007947(n) for n in (1..60)] # Peter Luschny, Mar 07 2017
-
(define (A007947 n) (if (= 1 n) n (* (A020639 n) (A007947 (A028234 n))))) ;; ;; Needs also code from A020639 and A028234. - Antti Karttunen, Jun 18 2017
A372619
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = 1/(phi(k)) * Sum_{j=1..n} phi(k*j).
Original entry on oeis.org
1, 1, 2, 1, 3, 4, 1, 2, 5, 6, 1, 3, 5, 9, 10, 1, 2, 5, 7, 13, 12, 1, 3, 4, 9, 11, 17, 18, 1, 2, 6, 6, 13, 14, 23, 22, 1, 3, 4, 10, 11, 17, 20, 31, 28, 1, 2, 5, 6, 14, 13, 23, 24, 37, 32, 1, 3, 5, 9, 10, 20, 19, 31, 33, 45, 42, 1, 2, 5, 7, 13, 12, 26, 23, 37, 37, 55, 46
Offset: 1
Square array T(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 3, 2, 3, 2, 3, 2, 3, 2, 3, ...
4, 5, 5, 5, 4, 6, 4, 5, 5, 5, ...
6, 9, 7, 9, 6, 10, 6, 9, 7, 9, ...
10, 13, 11, 13, 11, 14, 10, 13, 11, 14, ...
12, 17, 14, 17, 13, 20, 12, 17, 14, 18, ...
18, 23, 20, 23, 19, 26, 19, 23, 20, 24, ...
-
T[n_, k_] := Sum[EulerPhi[k*j], {j, 1, n}] / EulerPhi[k]; Table[T[k, n-k+1], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2024 *)
-
T(n, k) = sum(j=1, n, eulerphi(k*j))/eulerphi(k);
A173615
Numbers k such that rad(k)^2 divides sigma(k).
Original entry on oeis.org
1, 96, 864, 1080, 1782, 6144, 7128, 7776, 17280, 27000, 28512, 54432, 55296, 69984, 87480, 114048, 215622, 276480, 381024, 393216, 432000, 433026, 456192, 497664, 629856, 675000, 862488, 1382400, 1399680, 1677312, 1732104, 1824768, 2187000, 2195424, 2667168
Offset: 1
rad(96)^2 = 6^2 = 36, sigma(96) = 252 and 36 divides 252.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B11, p. 102.
- Amiram Eldar, Table of n, a(n) for n = 1..500 (terms 1..300 from Donovan Johnson)
- Kevin A. Broughan, Jean-Marie De Koninck, Imre Kátai, and Florian Luca, On integers for which the sum of divisors is the square of the squarefree core, J. Integer Seq., 15 (2012), Article 12.7.5, pp. 1-12. See Final remarks pp. 10-11.
- Kevin Broughan Daniel Delbourgo, and Qizhi Zhou, A conjecture of De Koninck regarding particular square values of the sum of divisors function, Journal of Number Theory, Vol. 137 (2014), pp. 50-66.
- Yong-Gao Chen and Xin Tong, On a conjecture of de Koninck, Journal of Number Theory, Vol. 154 (2015), pp. 324-364.
- Jean-Marie De Koninck, Probelm 000:08, Western Number Theory Problems, 17 & 20 Dec 2000, edited by Gerry Myerson, p. 5.
- Jean-Marie De Koninck, Problem 10966, The American Mathematical Monthly, Vol. 109, No. 8 (2002), p. 759; Editorial comment, ibid., Vol. 111, No. 6 (2004), p. 536.
- Min Tang and Zhi-Jun Zhou, On a conjecture of De Koninck, INTEGERS, Vol. 18 (2018), Article #A60.
- Wacław Sierpiński, Number Of Divisors And Their Sum, Elementary theory of numbers, Warszawa, 1964.
- Tomohiro Yamada, On a problem of De Koninck, Moscow Journal of Combinatorics and Number Theory, Vol. 10, No. 3 (2021), pp. 249-260; Correction, ibid., Vol. 10, No. 4 (2021), p. 339; arXiv preprint, arXiv:1906.10001 [math.NT], 2019-2021.
-
for n from 1 to 2000000 do : t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)): if irem(sigma(n),t2^2) = 0 then print (n): else fi: od :
-
f[p_, e_] := (p^(e+1) - 1)/(p^2 * (p-1)); q[k_] := IntegerQ[Times @@ f @@@ FactorInteger[k]]; q[1] = True; Select[Range[3*10^6], q] (* Amiram Eldar, Jan 29 2025 *)
-
isok(n) = my(f=factor(n)); (sigma(f) % factorback(f[, 1])^2) == 0; \\ Michel Marcus, Nov 09 2020
A338790
a(n) = rad(n)^2 - sigma(n), where rad(n) is the squarefree kernel of n (A007947) and sigma(n) is the sum of divisors of n (A000203).
Original entry on oeis.org
0, 1, 5, -3, 19, 24, 41, -11, -4, 82, 109, 8, 155, 172, 201, -27, 271, -3, 341, 58, 409, 448, 505, -24, -6, 634, -31, 140, 811, 828, 929, -59, 1041, 1102, 1177, -55, 1331, 1384, 1465, 10, 1639, 1668, 1805, 400, 147, 2044, 2161, -88, -8, 7, 2529, 578, 2755, -84, 2953
Offset: 1
- R. K. Guy, Unsolved Problems in Theory of Numbers, Springer-Verlag, Third Edition, 2004, B11.
- Michel Marcus, Table of n, a(n) for n = 1..10000
- K. Broughan, J.-M. De Koninck, I. Kátai, F. Luca, On integers for which the sum of divisors is the square of the squarefree core, J. Integer Seq., 15 (2012), pp. 1-12.
- Yong-Gao Chen, and Xin Tong, On a conjecture of de Koninck, Journal of Number Theory, Volume 154, September 2015, Pages 324-364. Beware of typo 1728.
-
a:= n-> mul(i[1], i=ifactors(n)[2])^2-numtheory[sigma](n):
seq(a(n), n=1..60); # Alois P. Heinz, Nov 09 2020
-
a(n) = my(f=factor(n)); factorback(f[, 1])^2 - sigma(f);
A339744
Numbers k such that rad(k)^2 < sigma(k), where rad(k) is the squarefree kernel of k (A007947) and sigma(k) is the sum of divisors of k (A000203).
Original entry on oeis.org
4, 8, 9, 16, 18, 24, 25, 27, 32, 36, 48, 49, 54, 64, 72, 80, 81, 96, 100, 108, 112, 121, 125, 128, 135, 144, 160, 162, 169, 192, 196, 200, 216, 224, 225, 243, 250, 256, 288, 289, 320, 324, 343, 352, 360, 361, 375, 384, 392, 400, 405, 416, 432, 441, 448, 450, 480, 484, 486, 500
Offset: 1
rad(18)^2 - sigma(18) = (2*3)^2 - (1+2+3+6+9+18) = 36 - 39 = -3 and 18 is a term.
rad(25)^2 - sigma(25) = 5^2 - (1+5+25) = 25 - 31 = -6 and 25 is a term.
rad(40)^2 - sigma(40) = (2*5)^2 - (1+2+4+5+8+10+20+40) = 100 - 90 = 10 and 40 is not a term.
- Richard K. Guy, Unsolved Problems in Theory of Numbers, Springer-Verlag, Third Edition, 2004, B11, p. 102.
-
s:=func; [k:k in [2..500]|s(k)^2 lt DivisorSigma(1,k)]; // Marius A. Burtea, Dec 15 2020
-
Rad := n -> convert(NumberTheory:-PrimeFactors(n), `*`):
Sigma := n -> NumberTheory:-SumOfDivisors(n):
Is_a := n -> Rad(n)^2 < Sigma(n):
select(Is_a, [`$`(1..500)]); # Peter Luschny, Dec 16 2020
-
frad2[p_, e_] := p^2; fsig[p_, e_] := (p^(e + 1) - 1)/(p - 1); Select[Range[2, 500], Times @@ frad2 @@@ (f = FactorInteger[#]) < Times @@ fsig @@@ f &] (* Amiram Eldar, Dec 15 2020 *)
-
isok(k) = factorback(factorint(k)[, 1])^2 < sigma(k); \\ Michel Marcus, Dec 15 2020
A374291
Squares of powerful numbers.
Original entry on oeis.org
1, 16, 64, 81, 256, 625, 729, 1024, 1296, 2401, 4096, 5184, 6561, 10000, 11664, 14641, 15625, 16384, 20736, 28561, 38416, 40000, 46656, 50625, 59049, 65536, 82944, 83521, 104976, 117649, 130321, 153664, 160000, 186624, 194481, 234256, 250000, 262144, 279841, 331776
Offset: 1
-
powQ[n_] := n==1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; Select[Range[600], powQ]^2
-
is(k) = issquare(k) && ispowerful(sqrtint(k));
-
from math import isqrt
from sympy import mobius, integer_nthroot
def A374291(n):
def squarefreepi(n):
return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c, l = n+x, 0
j = isqrt(x)
while j>1:
k2 = integer_nthroot(x//j**2, 3)[0]+1
w = squarefreepi(k2-1)
c -= j*(w-l)
l, j = w, isqrt(x//k2**3)
c -= squarefreepi(integer_nthroot(x, 3)[0])-l
return c
return bisection(f,n,n)**2 # Chai Wah Wu, Sep 10 2024
A188525
a(n) = rad(rad(n)^2+1), where rad = A007947.
Original entry on oeis.org
2, 5, 10, 5, 26, 37, 10, 5, 10, 101, 122, 37, 170, 197, 226, 5, 290, 37, 362, 101, 442, 485, 530, 37, 26, 677, 10, 197, 842, 901, 962, 5, 1090, 1157, 1226, 37, 1370, 85, 1522, 101, 58, 1765, 370, 485, 226, 2117, 2210, 37, 10, 101, 2602, 677, 2810, 37
Offset: 1
a(7) = rad(rad(7)^2 + 1) = rad(7^2 + 1) = rad(50) = 10.
-
[ &*PrimeDivisors((&*PrimeDivisors(n))^2+1): n in [1..51] ]; // Bruno Berselli, Apr 04 2011
-
with(numtheory):
rad:= n-> mul(i, i=factorset(n)):
a:= n-> rad(rad(n)^2+1):
seq(a(n), n=1..70); # Alois P. Heinz, Apr 03 2011
-
rad[n_] := Times @@ FactorInteger[n][[All, 1]];
a[n_] := rad[rad[n]^2 + 1];
Array[a, 70] (* Jean-François Alcover, Mar 27 2017 *)
-
rad(n)=my(f=factor(n)[,1]);prod(i=1,#f,f[i])
a(n)=rad(rad(n)^2+1) \\ Charles R Greathouse IV, Aug 08 2013
Showing 1-7 of 7 results.
Comments