A339744 Numbers k such that rad(k)^2 < sigma(k), where rad(k) is the squarefree kernel of k (A007947) and sigma(k) is the sum of divisors of k (A000203).
4, 8, 9, 16, 18, 24, 25, 27, 32, 36, 48, 49, 54, 64, 72, 80, 81, 96, 100, 108, 112, 121, 125, 128, 135, 144, 160, 162, 169, 192, 196, 200, 216, 224, 225, 243, 250, 256, 288, 289, 320, 324, 343, 352, 360, 361, 375, 384, 392, 400, 405, 416, 432, 441, 448, 450, 480, 484, 486, 500
Offset: 1
Keywords
Examples
rad(18)^2 - sigma(18) = (2*3)^2 - (1+2+3+6+9+18) = 36 - 39 = -3 and 18 is a term. rad(25)^2 - sigma(25) = 5^2 - (1+5+25) = 25 - 31 = -6 and 25 is a term. rad(40)^2 - sigma(40) = (2*5)^2 - (1+2+4+5+8+10+20+40) = 100 - 90 = 10 and 40 is not a term.
References
- Richard K. Guy, Unsolved Problems in Theory of Numbers, Springer-Verlag, Third Edition, 2004, B11, p. 102.
Links
- Marius A. Burtea, Table of n, a(n) for n = 1..10000
Programs
-
Magma
s:=func
; [k:k in [2..500]|s(k)^2 lt DivisorSigma(1,k)]; // Marius A. Burtea, Dec 15 2020 -
Maple
Rad := n -> convert(NumberTheory:-PrimeFactors(n), `*`): Sigma := n -> NumberTheory:-SumOfDivisors(n): Is_a := n -> Rad(n)^2 < Sigma(n): select(Is_a, [`$`(1..500)]); # Peter Luschny, Dec 16 2020
-
Mathematica
frad2[p_, e_] := p^2; fsig[p_, e_] := (p^(e + 1) - 1)/(p - 1); Select[Range[2, 500], Times @@ frad2 @@@ (f = FactorInteger[#]) < Times @@ fsig @@@ f &] (* Amiram Eldar, Dec 15 2020 *)
-
PARI
isok(k) = factorback(factorint(k)[, 1])^2 < sigma(k); \\ Michel Marcus, Dec 15 2020
Extensions
More terms from Marius A. Burtea, Dec 15 2020
Comments