A339794 a(n) is the least integer k satisfying rad(k)^2 < sigma(k) and whose prime factors set is the same as the prime factors set of A005117(n+1).
4, 9, 25, 18, 49, 80, 121, 169, 112, 135, 289, 361, 441, 352, 529, 416, 841, 360, 961, 891, 1088, 875, 1369, 1216, 1053, 1681, 672, 1849, 1472, 2209, 2601, 2809, 3025, 3249, 1856, 3481, 3721, 1984, 4225, 1584, 4489, 4761, 1960, 5041, 5329, 4736, 5929, 2496, 6241
Offset: 1
Keywords
Examples
n a(n) prime factor set 1 4 [2] A000079 2 9 [3] A000244 3 25 [5] A000351 4 18 [2, 3] A033845 5 49 [7] A000420 6 80 [2, 5] A033846 7 121 [11] A001020 8 169 [13] A001022 9 112 [2, 7] A033847 10 135 [3, 5] A033849 11 289 [17] A001026 12 361 [19] A001029 13 441 [3, 7] A033850 14 352 [2, 11] A033848 15 529 [23] A009967 16 416 [2, 13] A288162 17 841 [29] A009973 18 360 [2, 3, 5] A143207
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from Michel Marcus)
Crossrefs
Programs
-
PARI
u(n) = {my(fn=factor(n)[,1]); for (k = n, n^2, my(fk = factor(k)); if (fk[,1] == fn, if (factorback(fk[,1])^2 < sigma(fk), return (k));););} lista(nn) = {for (n=2, nn, if (issquarefree(n), print1(u(n), ", ");););}
Formula
a(n) <= A005117(n+1)^2. - David A. Corneth, Dec 19 2020
Comments