cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 1118 results. Next

A076479 a(n) = mu(rad(n)), where mu is the Moebius-function (A008683) and rad is the radical or squarefree kernel (A007947).

Original entry on oeis.org

1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 14 2002

Keywords

Comments

Multiplicative: a(1) = 1, a(n) for n >=2 is sign of parity of number of distinct primes dividing n. a(p) = -1, a(pq) = 1, a(pq...z) = (-1)^k, a(p^k) = -1, where p,q,.. z are distinct primes and k natural numbers. - Jaroslav Krizek, Mar 17 2009
a(n) is the unitary Moebius function, i.e., the inverse of the constant 1 function under the unitary convolution defined by (f X g)(n)= sum of f(d)g(n/d), where the sum is over the unitary divisors d of n (divisors d of n such that gcd(d,n/d)=1). - Laszlo Toth, Oct 08 2009

Crossrefs

Programs

  • Haskell
    a076479 = a008683 . a007947  -- Reinhard Zumkeller, Jun 01 2013
    
  • Magma
    [(-1)^(#PrimeDivisors(n)): n in [1..100]]; // Vincenzo Librandi, Dec 31 2018
    
  • Maple
    A076479 := proc(n)
        (-1)^A001221(n) ;
    end proc:
    seq(A076479(n),n=1..80) ; # R. J. Mathar, Nov 02 2016
  • Mathematica
    Table[(-1)^PrimeNu[n], {n,50}] (* Enrique Pérez Herrero, Jan 17 2013 *)
  • PARI
    N=66;
    mu=vector(N); mu[1]=1;
    { for (n=2,N,
        s = 0;
        fordiv (n,d,
            if (gcd(d,n/d)!=1, next() ); /* unitary divisors only */
            s += mu[d];
        );
        mu[n] = -s;
    ); };
    mu /* Joerg Arndt, May 13 2011 */
    /* omitting the line if ( gcd(...)) gives the usual Moebius function */
    
  • PARI
    a(n)=(-1)^omega(n) \\ Charles R Greathouse IV, Aug 02 2013
    
  • Python
    from math import prod
    from sympy.ntheory import mobius, primefactors
    def A076479(n): return mobius(prod(primefactors(n))) # Chai Wah Wu, Sep 24 2021

Formula

a(n) = A008683(A007947(n)).
a(n) = (-1)^A001221(n). Multiplicative with a(p^e) = -1. - Vladeta Jovovic, Dec 03 2002
a(n) = sign(A180403(n)). - Mats Granvik, Oct 08 2010
Sum_{n>=1} a(n)*phi(n)/n^3 = A065463 with phi()=A000010() [Cohen, Lemma 3.5]. - R. J. Mathar, Apr 11 2011
Dirichlet convolution of A000012 with A226177 (signed variant of A074823 with one factor mu(n) removed). - R. J. Mathar, Apr 19 2011
Sum_{n>=1} a(n)/n^2 = A065469. - R. J. Mathar, Apr 19 2011
a(n) = Sum_{d|n} mu(d)*tau_2(d) = Sum_{d|n} A008683(d)*A000005(d) . - Enrique Pérez Herrero, Jan 17 2013
a(A030230(n)) = -1; a(A030231(n)) = +1. - Reinhard Zumkeller, Jun 01 2013
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 - 2p^(-s)). - Álvar Ibeas, Dec 30 2018
Sum_{n>=1} a(n)/n = 0 (van de Lune and Dressler, 1975). - Amiram Eldar, Mar 05 2021
From Richard L. Ollerton, May 07 2021: (Start)
For n>1, Sum_{k=1..n} a(gcd(n,k))*phi(gcd(n,k))*rad(gcd(n,k))/gcd(n,k) = 0.
For n>1, Sum_{k=1..n} a(n/gcd(n,k))*phi(gcd(n,k))*rad(n/gcd(n,k))*gcd(n,k) = 0. (End)
a(n) = Sum_{d1|n} Sum_{d2|n} mu(d1*d2). - Ridouane Oudra, May 25 2023

A243822 Number of k < n such that rad(k) | n but k does not divide n, where rad = A007947.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 2, 1, 0, 0, 4, 0, 2, 1, 3, 0, 3, 0, 3, 0, 2, 0, 10, 0, 0, 2, 4, 1, 5, 0, 4, 2, 3, 0, 11, 0, 3, 2, 4, 0, 5, 0, 6, 2, 3, 0, 8, 1, 3, 2, 4, 0, 14, 0, 4, 2, 0, 1, 14, 0, 4, 2, 12, 0, 6, 0, 5, 3, 4, 1, 15, 0, 4, 0, 5, 0, 16, 1, 5, 3, 3, 0, 20, 1, 4, 3, 5, 1, 8, 0, 7, 2, 6
Offset: 1

Views

Author

Michael De Vlieger, Jun 11 2014

Keywords

Comments

Former name: number of "semidivisors" of n, numbers m < n that do not divide n but divide n^e for some integer e > 1. See ACM Inroads paper.

Examples

			From _Michael De Vlieger_, Aug 11 2024: (Start)
Let S(n) = row n of A162306 and let D(n) = row n of A027750.a(2) = 0 since S(2) \ D(2) = {1, 2} \ {1, 2} is null.
a(10) = 2 since S(10) \ D(10) = {1, 2, 4, 5, 8, 10} \ {1, 2, 5, 10} = {4, 8}.a(16) = 0 since S(16) \ D(16) = {1, 2, 4, 8, 16} \ {1, 2, 4, 8, 16} is null, etc.Table of a(n) and S(n) \ D(n):
   n  a(n)  row n of A272618.
  ---------------------------
   6    1   {4}
  10    2   {4, 8}
  12    2   {8, 9}
  14    2   {4, 8}
  15    1   {9}
  18    4   {4, 8, 12*, 16}
  20    2   {8, 16}
  21    1   {9}
  22    3   {4, 8, 16}
  24    3   {9, 16, 18*}
  26    3   {4, 8, 16}
  28    2   {8, 16}
  30   10   {4, 8, 9, 12, 16, 18, 20, 24, 25, 27}
Terms in A272618 marked with an asterisk are counted by A355432. All other terms are counted by A361235. (End)
		

Crossrefs

Programs

Formula

a(n) = A010846(n) - A000005(n) = card({row n of A162306} \ {row n of A027750}).
a(n) = A045763(n) - A243823(n).
a(n) = (Sum_{1<=k<=n, gcd(n,k)=1} mu(k)*floor(n/k)) - tau(n). - Michael De Vlieger, May 10 2016, after Benoit Cloitre at A010846.
From Michael De Vlieger, Aug 11 2024" (Start)
a(n) = 0 for n in A000961, a(n) > 0 for n in A024619.
a(n) = A051953(n) - A000005(n) + 1 = n - A000010(n) - A000005(n) - A243823(n) + 1.
a(n) = A355432(n) + A361235(n).
a(n) = A355432(n) for n in A360768.
a(n) = A361235(n) for n not in A360768.
a(n) = number of terms in row n of A272618.
a(n) = sum of row n of A304570. (End)

Extensions

New name from David James Sycamore, Aug 11 2024

A147298 Minimum of rad(m (n - m) n) for 0 < m < n, gcd(m,n) = 1, where rad(k) = A007947(k) = product of prime factors of k.

Original entry on oeis.org

2, 6, 6, 10, 30, 42, 14, 6, 30, 66, 66, 78, 182, 210, 30, 34, 102, 114, 190, 210, 462, 322, 138, 30, 130, 30, 42, 174, 870, 186, 30, 66, 510, 210, 210, 222, 1254, 546, 390, 246, 1722, 258, 946, 330, 690, 1410, 282, 42, 70, 510, 390, 742, 210, 330, 770, 570, 1218
Offset: 2

Views

Author

Artur Jasinski, Nov 05 2008

Keywords

Comments

Function rad(k) is used in ABC conjecture applications.
For biggest values of function rad(m n (n - m)) see A147299.
For numbers m for which rad(m n (n - m)) reached minimal value see A147300.
For numbers m for which rad(m n (n - m)) reached maximal value see A147301.
Sequence in each value Log[n]/Log[A147298(n)] reached records see A147302.

Crossrefs

Programs

  • Maple
    A147298 := proc(n) local rad, g, L;
    rad := n -> mul(k, k in numtheory:-factorset(n)):
    g := (n, k) -> `if`(igcd(n, k) = 1, 1, infinity):
    L := n -> [seq(g(n,k)*rad(n*k*(n-k)), k=1..n/2)]:
    min(L(n)) end: seq(A147298(n), n=2..58); # Peter Luschny, Aug 06 2019
  • Mathematica
    logmax = 0; aa = {}; bb = {}; cc = {}; dd = {}; ee = {}; ff = {}; gg \ = {}; Do[min = 10^100; max = 0; ile = 0; Do[If[GCD[m, n, n - m] == 1, ile = ile + 1; s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; AppendTo[aa, min]; AppendTo[bb, max]; AppendTo[cc, mmax]; AppendTo[dd, mmin]; AppendTo[gg, ile]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[ee, {N[logmax], n, mmin, min, mmax, max}]; Print[{N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]], {n, 2, 129}]; aa (*Artur Jasinski*)
    Table[Min[Times @@ FactorInteger[#][[All, 1]] & /@ ((m = Select[Range[1, n - 1], GCD[n, #] == 1 &])*(n - m)*n)], {n, 2, 58}] (* Ivan Neretin, May 21 2015 *)
  • PARI
    A147298(n)= local(m=n^2); for( a=1,n\2, gcd(a,n)>1 && next; A007947(n-a)*A007947(a)A007947(n-a)*A007947(a)); m*A007947(n)

A066503 a(n) = n - squarefree kernel of n, A007947.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 6, 6, 0, 0, 6, 0, 0, 0, 14, 0, 12, 0, 10, 0, 0, 0, 18, 20, 0, 24, 14, 0, 0, 0, 30, 0, 0, 0, 30, 0, 0, 0, 30, 0, 0, 0, 22, 30, 0, 0, 42, 42, 40, 0, 26, 0, 48, 0, 42, 0, 0, 0, 30, 0, 0, 42, 62, 0, 0, 0, 34, 0, 0, 0, 66, 0, 0, 60, 38, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 04 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n - Times @@ FactorInteger[n][[All, 1]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 01 2021 *)
  • PARI
    { for (n=1, 1000, f=factor(n); k=1; for(i=1, matsize(f)[1], k*=f[i, 1]); write("b066503.txt", n, " ", n - k) ) } \\ Harry J. Smith, Feb 18 2010

Formula

a(n) = n - A007947(n).
a(A005117(n)) = 0.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 - A065463 = 0.295557... . - Amiram Eldar, Dec 05 2023

A048803 a(n) = Product_{k=1..n} rad(k), where rad(n) is the product of distinct prime factors of n, cf. A007947.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 360, 2520, 5040, 15120, 151200, 1663200, 9979200, 129729600, 1816214400, 27243216000, 54486432000, 926269344000, 5557616064000, 105594705216000, 1055947052160000, 22174888095360000, 487847538097920000, 11220493376252160000, 67322960257512960000
Offset: 0

Views

Author

Christian G. Bower, Apr 15 1999

Keywords

Comments

Squarefree factorials: a(1) = 1, a(n+1) = a(n)* largest squarefree divisor of (n+1). - Amarnath Murthy, Nov 28 2004
LCM over all partitions of n of the product of the part sizes in the partition. - Franklin T. Adams-Watters, May 04 2010
a(n) is the product of the lcm of the set of prime factors of k over the range k = 1..n. - Peter Luschny, Jun 10 2011
a(n) is a divisor of n! and n!/a(n) = A085056(n). - Robert FERREOL, Aug 09 2021
In consequence of the definition, pseudo-binomial coefficients a(m+n)/(a(m)*a(n)) are natural numbers for all whole numbers m and n, and this is the minimal increasing sequence (for n >= 1) with that property. In consequence of the comment of Adams-Watters, the corresponding pseudo-multinomial coefficients are natural numbers as well. - Hal M. Switkay, May 26 2024

References

  • Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued Polynomials, AMS, Providence, RI, 1997. Math. Rev. 98a:13002. See p. 246.

Crossrefs

Partial products of A007947.

Programs

  • Haskell
    a048803 n = a048803_list !! n
    a048803_list = scanl (*) 1 a007947_list
    -- Reinhard Zumkeller, Jul 01 2013
    
  • Maple
    A048803 := proc(n) local i; mul(ilcm(op(numtheory[factorset](i))), i=1..n) end; seq(A048803(i),i=0..22); # Peter Luschny, Jun 10 2011
    a := n -> mul(NumberTheory:-Radical(i), i=1..n): # Peter Luschny, Mar 14 2022
  • Mathematica
    a[0] = 1; a[n_] := a[n] = a[n-1] First @ Select[Reverse @ Divisors[n], SquareFreeQ, 1]; Array[a,22,0] (* Jean-François Alcover, May 04 2011 *)
    A048803[n_] := Times @@ ResourceFunction["IntegerRadical"][Range[1, n]];
    Table[A048803[n], {n, 0, 24}]  (* Peter Luschny, Aug 18 2025 *)
  • PARI
    a(n)=local(f); f=n>=0; if(n>1, forprime(p=2,n,f*=p^(n\p))); f
    
  • SageMath
    from functools import cache
    @cache
    def a_rec(n):
        if n == 0: return 1
        return radical(n) * a_rec(n - 1)
    print([a_rec(n) for n in range(23)]) # Peter Luschny, Dec 12 2023

Formula

a(0) = 1, a(1) = 1; for n > 1, a(n) = lcm( 1, 2, ..., n, a(1)*a(n-1), a(2)*a(n-2), ..., a(n-1)*a(1) ). [Original name.]
a(n) = Product_{p prime} p^floor(n/p). See Farhi link p. 16. - Michel Marcus, Oct 18 2018
For n >=1, a(n) = lcm(1^floor(n/1),2^floor(n/2),...,n^floor(n/n)). - Robert FERREOL, Aug 05 2021
Rephrasing Murthy's comment: a(n) = a(n-1) * A007947(n). - Hal M. Switkay, Dec 31 2024

Extensions

Entry improved by comments from Michael Somos, Nov 24 2001
New name based on a comment of Amarnath Murthy by Peter Luschny, Aug 18 2025

A078310 a(n) = n*rad(n) + 1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

2, 5, 10, 9, 26, 37, 50, 17, 28, 101, 122, 73, 170, 197, 226, 33, 290, 109, 362, 201, 442, 485, 530, 145, 126, 677, 82, 393, 842, 901, 962, 65, 1090, 1157, 1226, 217, 1370, 1445, 1522, 401, 1682, 1765, 1850, 969, 676, 2117, 2210, 289, 344, 501, 2602, 1353
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Comments

A112526(a(n) - 1) = 1, see also A224866. - Reinhard Zumkeller, Jul 23 2013
Increase each exponent in the prime factorization by one, then add 1 to the new product. - M. F. Hasler, Jan 22 2017

Crossrefs

Smallest, greatest factor: A078311, A078312, number of factors: A078313, A078314, min, max exponent: A078315, A078316, number, sum of divisors: A078317, A078318, sum of prime factors: A078319, A078320, Euler's totient: A078321, squarefree kernel: A078322, arithmetic derivative: A078323.
Cf. primes: A078324, squarefree: A078325, squareful: A078326.

Programs

  • Haskell
    a078310 n = n * a007947 n + 1
    -- Reinhard Zumkeller, Jul 23 2013, Oct 19 2011
    
  • Maple
    a:= n-> 1+n*mul(i[1], i=ifactors(n)[2]):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 22 2017
  • Mathematica
    A078310[n_] := n*Times @@ FactorInteger[n][[All, 1]] + 1; Array[A078310, 50] (* G. C. Greubel, Apr 25 2017 *)
  • PARI
    rad(n)=my(f=factor(n)[,1]);prod(i=1,#f,f[i])
    a(n)=n*rad(n)+1 \\ Charles R Greathouse IV, Jul 09 2013
    
  • PARI
    a(n)={n=factor(n);n[,2]+=vectorv(matsize(n)[1],i,1);factorback(n)+1} \\ M. F. Hasler, Jan 22 2017
    
  • PARI
    a(n)=prod(k=1,matsize(n=factor(n))[1],n[k,1]^(n[k,2]+1))+1 \\ M. F. Hasler, Jan 22 2017

Formula

a(n) = A064549(n)+1.

A080259 Numbers whose squarefree kernel is not a primorial number, i.e., A007947(a(n)) is not in A002110.

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Labos Elemer, Mar 19 2003

Keywords

Comments

Complement to A055932.
From Michael De Vlieger, Feb 06 2024: (Start)
Odd prime power p^m, m >= 1 is in the sequence since its squarefree kernel p is odd and not a primorial. Therefore 3^3, 5^2, etc. are in the sequence.
Odd squarefree composite k is in the sequence since its squarefree kernel is odd and thus not a primorial. Therefore 15 and 33 are in the sequence.
Numbers k such that A053669(k) < A006530(k) are in the sequence since the condition A053669(k) < A006530(k) implies the squarefree kernel is not a primorial, etc. (End)

Examples

			From _Michael De Vlieger_, Jan 23 2024: (Start)
1 is not in the sequence because its squarefree kernel is 1, the product of the 0 primes that divide 1 (the "empty product") and therefore the same as A002110(0), the 0th primorial.
2 is not in the sequence since its squarefree kernel is 2, the smallest prime, hence the same as A002110(1) = 2.
4 is not in the sequence since its squarefree kernel is 2 = A002110(1).
(End)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[120], Nor[IntegerQ@ Log2[#], And[EvenQ[#], Union@ Differences@ PrimePi[FactorInteger[#][[All, 1]]] == {1}]] &] (* Michael De Vlieger, Jan 23 2024 *)
  • PARI
    is(n) = {my(f=factor(n)[,1]);n>1&&primepi(f[#f])>#f} \\ David A. Corneth, May 22 2016
    
  • Python
    from itertools import count, islice
    from sympy import primepi, primefactors
    def A080259_gen(startvalue=2): # generator of terms >= startvalue
        for k in count(max(startvalue,2)):
            p = list(map(primepi,primefactors(k)))
            if not(min(p)==1 and max(p)==len(p)):
                yield k
    A080259_list = list(islice(A080259_gen(),40)) # Chai Wah Wu, Aug 07 2025

Formula

{a(n)} = { k : A053669(k) < A006530(k) }. - Michael De Vlieger, Jan 23 2024

Extensions

Edited by Michael De Vlieger, Jan 23 2024

A355432 a(n) = number of k < n such that rad(k) = rad(n) and k does not divide n, where rad(k) = A007947(k).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Michael De Vlieger, Feb 22 2023

Keywords

Comments

a(n) = 0 for prime powers and squarefree numbers.

Examples

			a(1) = 18, since 18/6 >= 3. We note that rad(12) = rad(18) = 6, yet 12 does not divide 18.
a(2) = 24, since 24/6 >= 3. rad(18) = rad(24) = 6 and 24 mod 18 = 6.
a(3) = 36, since 36/6 >= 3. rad(24) = rad(36) = 6 and 36 mod 24 = 12.
a(6) = 54, since 54/6 >= 3. m in {12, 24, 36, 48} are such that rad(m) = rad(54) = 6, but none divides 54, etc.
		

Crossrefs

Programs

  • Mathematica
    rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]]; Table[Which[PrimePowerQ[n], 0, SquareFreeQ[n], 0, True, r = rad[n]; Count[Select[Range[n], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], _?(And[rad[#] == r, Mod[n, #] != 0] &)]], {n, 120}]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    a(n) = my(rn=rad(n)); sum(k=1, n-1, if (n % k, rad(k)==rn)); \\ Michel Marcus, Feb 23 2023

Formula

a(n) > 0 for n in A360768.
a(n) < A243822(n) < A010846(n).
a(n) = A008479(n) - A005361(n). - Amiram Eldar, Oct 25 2024

A360768 Numbers k that are neither prime powers nor squarefree, such that k/rad(k) >= q, where rad(k) = A007947(k) and prime q = A119288(k).

Original entry on oeis.org

18, 24, 36, 48, 50, 54, 72, 75, 80, 90, 96, 98, 100, 108, 112, 120, 126, 135, 144, 147, 150, 160, 162, 168, 180, 189, 192, 196, 198, 200, 216, 224, 225, 234, 240, 242, 245, 250, 252, 264, 270, 288, 294, 300, 306, 312, 320, 324, 336, 338, 342, 350, 352, 360, 363, 375, 378, 384, 392, 396, 400, 405, 408
Offset: 1

Views

Author

Michael De Vlieger, Feb 22 2023

Keywords

Comments

Proper subsequence of A126706.
Numbers k such that there exists j such that 1 < j < k and rad(j) = rad(k), but j does not divide k.

Examples

			a(1) = 18, since 18/6 >= 3. We note that rad(12) = rad(18) = 6, yet 12 does not divide 18.
a(2) = 24, since 24/6 >= 3. Note: rad(18) = rad(24) = 6 and 24 mod 18 = 6.
a(3) = 36, since 36/6 >= 3. Note: rad(24) = rad(36) = 6 and 36 mod 24 = 12.
a(6) = 54, since 54/6 >= 3. Note: m in {12, 24, 36, 48} are such that rad(m) = rad(54) = 6, but none divides 54, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[120], Nor[SquareFreeQ[#], PrimePowerQ[#]] &], #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]

Formula

This sequence is { k in A126706 : k/A007947(k) >= A119288(k) }.

A328571 Primorial base expansion of n converted into its prime product form, but with all nonzero digits replaced by 1's: a(n) = A007947(A276086(n)).

Original entry on oeis.org

1, 2, 3, 6, 3, 6, 5, 10, 15, 30, 15, 30, 5, 10, 15, 30, 15, 30, 5, 10, 15, 30, 15, 30, 5, 10, 15, 30, 15, 30, 7, 14, 21, 42, 21, 42, 35, 70, 105, 210, 105, 210, 35, 70, 105, 210, 105, 210, 35, 70, 105, 210, 105, 210, 35, 70, 105, 210, 105, 210, 7, 14, 21, 42, 21, 42, 35, 70, 105, 210, 105, 210, 35, 70, 105, 210, 105, 210, 35, 70
Offset: 0

Views

Author

Antti Karttunen, Oct 20 2019

Keywords

Crossrefs

Cf. A276156 (gives the indices where this coincides with A276086).

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[All, 1]];
    A276086[n0_] := Module[{m = 1, i = 1, n = n0, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m];
    a[n_] := rad[A276086[n]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 01 2021, after Antti Karttunen in A276086 *)
  • PARI
    A328571(n) = { my(m=1, p=2); while(n, m *= (p^!!(n%p)); n = n\p; p = nextprime(1+p)); (m); };

Formula

a(n) = A007947(A276086(n)).
a(n) = A276086(n) / A328572(n).
a(A276156(n)) = A276086(A276156(n)). [And at no other points the equality holds]
A001221(a(n)) = A267263(n).
a(n) = A083346(A276086(n)). - Antti Karttunen, Feb 28 2021
Showing 1-10 of 1118 results. Next