cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A360589 Numbers k that set records in A355432.

Original entry on oeis.org

1, 18, 48, 54, 162, 384, 486, 1350, 1458, 2250, 2430, 3750, 6000, 6750, 7290, 11250, 12150, 14580, 15000, 15360, 18750, 21870, 30720, 33750, 36450, 37500, 43740, 56250, 61440, 65610, 93750, 122880, 168750, 182250, 187500, 196830, 245760, 281250, 328050, 360150, 375000, 393660
Offset: 1

Views

Author

Michael De Vlieger, Feb 22 2023

Keywords

Comments

Subset of A055932.
For n > 1, subset of A360768, which is in turn a subset of A126706.
Conjecture: for n > 2, subset of A364702. - Michael De Vlieger, Oct 04 2024

Examples

			Let rad(m) = A007947(m).
a(1) = 1 since 1 is the empty product.
a(2) = 18 since {12} is a nondivisor k < 18 such that rad(k) = rad(18).
a(3) = 48 since {18, 36} are nondivisors k < 48 such that rad(k) = rad(48).
a(4) = 54 since {12, 24, 36, 48} are nondivisors k < 54 such that rad(k) = rad(54), etc.
Table shows prime decomposition of a(n) = Product p^e, noting multiplicity e in the pi(p)-th position. For example, a(n) = 1350 = 2 * 3^3 * 5^2, hence we write 1.3.2.
a(n) = A055932(i) and has A360912(n) nondivisors k < a(n) such that rad(k) = rad(a(n)).
   n    a(n) A067255(a(n))  i  A360912(n)
  ----------------------------------------
   1      1      0          1          0
   2     18      1.2        8          1
   3     48      4.1       13          2
   4     54      1.3       14          4
   5    162      1.4       25          8
   6    384      7.1       37         10
   7    486      1.5       42         14
   8   1350      1.3.2     65         16
   9   1458      1.6       67         21
  10   2250      1.2.3     81         23
  11   2430      1.5.1     85         26
  12   3750      1.1.4     99         33
  ...
		

Crossrefs

Programs

  • Mathematica
    rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]]; t = Select[Range[2^14], Nor[SquareFreeQ[#], PrimePowerQ[#]] &]; s = Select[t, #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]; t = Table[m = s[[n]]; r = rad[m]; Count[TakeWhile[t, # < m &], _?(And[rad[#] == r, Mod[m, #] != 0] &)], {n, Length[s]}]; {1}~Join~Map[s[[FirstPosition[t, #][[1]]]] &, Union@ FoldList[Max, t]]

A360912 Records in A355432.

Original entry on oeis.org

0, 1, 2, 4, 8, 10, 14, 16, 21, 23, 26, 33, 34, 39, 44, 51, 52, 54, 55, 58, 67, 70, 76, 77, 80, 83, 84, 95, 98, 104, 119, 124, 133, 134, 142, 148, 153, 160, 164, 168, 169, 172, 174, 178, 186, 191, 197, 201, 210, 217, 223, 229, 235, 236, 243, 252, 253, 255, 262, 266, 273, 276, 284, 294, 303, 309, 314
Offset: 1

Views

Author

Michael De Vlieger, Mar 05 2023

Keywords

Crossrefs

Programs

  • Mathematica
    rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]];
    t = Select[Range[2^12], Nor[SquareFreeQ[#], PrimePowerQ[#]] &];
    s = Select[t, #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &];
    {0}~Join~Union@ FoldList[Max, Table[m = s[[n]]; r = rad[m];
      Count[TakeWhile[t, # < m &], _?(And[rad[#] == r, Mod[m, #] != 0] &)], {n, Length[s]}]]

A243822 Number of k < n such that rad(k) | n but k does not divide n, where rad = A007947.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 2, 1, 0, 0, 4, 0, 2, 1, 3, 0, 3, 0, 3, 0, 2, 0, 10, 0, 0, 2, 4, 1, 5, 0, 4, 2, 3, 0, 11, 0, 3, 2, 4, 0, 5, 0, 6, 2, 3, 0, 8, 1, 3, 2, 4, 0, 14, 0, 4, 2, 0, 1, 14, 0, 4, 2, 12, 0, 6, 0, 5, 3, 4, 1, 15, 0, 4, 0, 5, 0, 16, 1, 5, 3, 3, 0, 20, 1, 4, 3, 5, 1, 8, 0, 7, 2, 6
Offset: 1

Views

Author

Michael De Vlieger, Jun 11 2014

Keywords

Comments

Former name: number of "semidivisors" of n, numbers m < n that do not divide n but divide n^e for some integer e > 1. See ACM Inroads paper.

Examples

			From _Michael De Vlieger_, Aug 11 2024: (Start)
Let S(n) = row n of A162306 and let D(n) = row n of A027750.a(2) = 0 since S(2) \ D(2) = {1, 2} \ {1, 2} is null.
a(10) = 2 since S(10) \ D(10) = {1, 2, 4, 5, 8, 10} \ {1, 2, 5, 10} = {4, 8}.a(16) = 0 since S(16) \ D(16) = {1, 2, 4, 8, 16} \ {1, 2, 4, 8, 16} is null, etc.Table of a(n) and S(n) \ D(n):
   n  a(n)  row n of A272618.
  ---------------------------
   6    1   {4}
  10    2   {4, 8}
  12    2   {8, 9}
  14    2   {4, 8}
  15    1   {9}
  18    4   {4, 8, 12*, 16}
  20    2   {8, 16}
  21    1   {9}
  22    3   {4, 8, 16}
  24    3   {9, 16, 18*}
  26    3   {4, 8, 16}
  28    2   {8, 16}
  30   10   {4, 8, 9, 12, 16, 18, 20, 24, 25, 27}
Terms in A272618 marked with an asterisk are counted by A355432. All other terms are counted by A361235. (End)
		

Crossrefs

Programs

Formula

a(n) = A010846(n) - A000005(n) = card({row n of A162306} \ {row n of A027750}).
a(n) = A045763(n) - A243823(n).
a(n) = (Sum_{1<=k<=n, gcd(n,k)=1} mu(k)*floor(n/k)) - tau(n). - Michael De Vlieger, May 10 2016, after Benoit Cloitre at A010846.
From Michael De Vlieger, Aug 11 2024" (Start)
a(n) = 0 for n in A000961, a(n) > 0 for n in A024619.
a(n) = A051953(n) - A000005(n) + 1 = n - A000010(n) - A000005(n) - A243823(n) + 1.
a(n) = A355432(n) + A361235(n).
a(n) = A355432(n) for n in A360768.
a(n) = A361235(n) for n not in A360768.
a(n) = number of terms in row n of A272618.
a(n) = sum of row n of A304570. (End)

Extensions

New name from David James Sycamore, Aug 11 2024

A360768 Numbers k that are neither prime powers nor squarefree, such that k/rad(k) >= q, where rad(k) = A007947(k) and prime q = A119288(k).

Original entry on oeis.org

18, 24, 36, 48, 50, 54, 72, 75, 80, 90, 96, 98, 100, 108, 112, 120, 126, 135, 144, 147, 150, 160, 162, 168, 180, 189, 192, 196, 198, 200, 216, 224, 225, 234, 240, 242, 245, 250, 252, 264, 270, 288, 294, 300, 306, 312, 320, 324, 336, 338, 342, 350, 352, 360, 363, 375, 378, 384, 392, 396, 400, 405, 408
Offset: 1

Views

Author

Michael De Vlieger, Feb 22 2023

Keywords

Comments

Proper subsequence of A126706.
Numbers k such that there exists j such that 1 < j < k and rad(j) = rad(k), but j does not divide k.

Examples

			a(1) = 18, since 18/6 >= 3. We note that rad(12) = rad(18) = 6, yet 12 does not divide 18.
a(2) = 24, since 24/6 >= 3. Note: rad(18) = rad(24) = 6 and 24 mod 18 = 6.
a(3) = 36, since 36/6 >= 3. Note: rad(24) = rad(36) = 6 and 36 mod 24 = 12.
a(6) = 54, since 54/6 >= 3. Note: m in {12, 24, 36, 48} are such that rad(m) = rad(54) = 6, but none divides 54, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[120], Nor[SquareFreeQ[#], PrimePowerQ[#]] &], #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]

Formula

This sequence is { k in A126706 : k/A007947(k) >= A119288(k) }.

A361098 Intersection of A360765 and A360768.

Original entry on oeis.org

36, 48, 50, 54, 72, 75, 80, 96, 98, 100, 108, 112, 135, 144, 147, 160, 162, 189, 192, 196, 200, 216, 224, 225, 240, 242, 245, 250, 252, 270, 288, 294, 300, 320, 324, 336, 338, 350, 352, 360, 363, 375, 378, 384, 392, 396, 400, 405, 416, 432, 441, 448, 450, 468, 480, 484, 486, 490, 500, 504, 507, 525
Offset: 1

Views

Author

Michael De Vlieger, Mar 15 2023

Keywords

Comments

Numbers k that are neither prime powers nor squarefree, such that rad(k) * A053669(k) < k and k/rad(k) >= A119288(k), where rad(k) = A007947(k).
Numbers k such that A360480(k), A360543(k), A361235(k), and A355432(k) are positive.
Subset of A126706. All terms are neither prime powers nor squarefree.
From Michael De Vlieger, Aug 03 2023: (Start)
Superset of A286708 = A001694 \ {{1} U A246547}, which in turn is a superset of A303606. We may write k in A286708 as m*rad(k)^2, m >= 1. Since omega(k) > 1, it is clear both k/rad(k) > A053669(k) and k/rad(k) >= A119288(k). Also superset of A359280 = A286708 \ A303606.
This sequence contains {A002182 \ A168263}. (End)

Examples

			For prime p, A360480(p) = A360543(p) = A361235(p) = A355432(p) = 0, since k < p is coprime to p.
For prime power n = p^e > 4, e > 0, A360543(n) = p^(e-1) - e, but A360480(n) = A361235(n) = A355432(n) = 0, since the other sequences require omega(n) > 1.
For squarefree composite n, A360480(n) >= 1 and A361235(n) >= 1 (the latter for n > 6), but A360543(n) = A355432(n) = 0, since the other sequences require at least 1 prime power factor p^e | n with e > 0.
For n = 18, A360480(n) = | {10, 14, 15} | = 3,
            A360543(n) = | {} | = 0,
            A361235(n) = | {4, 8, 16} | = 3,
            A355432(n) = | {12} | = 1.
Therefore 18 is not in the sequence.
For n = 36, A360480(n) = | {10, 14, 15, 20, 21, 22, 26, 28, 33, 34} | = 10,
            A360543(n) = | {30} | = 1,
            A361235(n) = | {8, 16, 27, 32} | = 4,
            A355432(n) = | {24} | = 1.
Therefore 36 is the smallest term in the sequence.
Table pertaining to the first 12 terms:
Key: a = A360480, b = A360543, c = A243823; d = A361235, e = A355432, f = A243822;
g = A046753 = f + c, tau = A000005, phi = A000010.
    n |  a + b =  c | d + e = f | g + tau + phi - 1 =  n
  ------------------------------------------------------
   36 | 10 + 1 = 11 | 4 + 1 = 5 | 16 +  9 + 12 - 1 =  36
   48 | 16 + 2 = 18 | 3 + 2 = 5 | 23 + 10 + 16 - 1 =  48
   50 | 18 + 1 = 19 | 4 + 2 = 6 | 25 +  6 + 20 - 1 =  50
   54 | 19 + 2 = 21 | 4 + 4 = 8 | 29 +  8 + 18 - 1 =  54
   72 | 27 + 4 = 31 | 4 + 2 = 6 | 37 + 12 + 24 - 1 =  72
   75 | 25 + 2 = 27 | 2 + 1 = 3 | 30 +  6 + 40 - 1 =  75
   80 | 32 + 3 = 35 | 3 + 1 = 4 | 39 + 10 + 32 - 1 =  80
   96 | 38 + 7 = 45 | 4 + 4 = 8 | 53 + 12 + 32 - 1 =  96
   98 | 41 + 3 = 44 | 5 + 2 = 7 | 51 +  6 + 42 - 1 =  98
  100 | 42 + 4 = 46 | 4 + 2 = 6 | 52 +  9 + 40 - 1 = 100
  108 | 44 + 8 = 52 | 5 + 4 = 9 | 61 + 12 + 36 - 1 = 108
  112 | 48 + 3 = 51 | 3 + 1 = 4 | 55 + 10 + 48 - 1 = 112
		

Crossrefs

Programs

  • Mathematica
    nn = 2^16;
    a053669[n_] := If[OddQ[n], 2, p = 2; While[Divisible[n, p], p = NextPrime[p]]; p];
    s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &];
    Reap[ Do[n = s[[j]];
        If[And[#1*a053669[n] < n, n/#1 >= #2] & @@ {Times @@ #, #[[2]]} &@
          FactorInteger[n][[All, 1]], Sow[n]], {j, Length[s]}]][[-1, -1]]

A364998 Numbers k neither squarefree nor prime power such that rad(k)*A119288(k) <= k but rad(k)*A053669(k) > k.

Original entry on oeis.org

18, 24, 90, 120, 126, 150, 168, 180, 198, 234, 264, 306, 312, 342, 408, 414, 456, 522, 552, 558, 630, 666, 696, 738, 744, 774, 840, 846, 888, 954, 984, 990, 1032, 1050, 1062, 1098, 1128, 1170, 1206, 1260, 1272, 1278, 1314, 1320, 1386, 1416, 1422, 1464, 1470, 1494
Offset: 1

Views

Author

Michael De Vlieger, Aug 16 2023

Keywords

Comments

Subset of A126706, numbers that are neither squarefree nor prime powers.
For k in this sequence, let p = A119288(k), q = A053669(k), and r = A007947(k).
A355432(k) > 0, A360543(k) = 0. There exist nondivisors m < k such that rad(m) = rad(k); however, m < k, gcd(m,k) > 1 such that both omega(k) > omega(m) and rad(m) | k do not exist.

Examples

			Let b(n) = A126706(n), S = A360768, and T = A363082.
b(1) = 12 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6 = 30; both exceed 12, thus 12 is not in S.
b(2) = a(1) = 18 since p*r = 3*6 = 18 and q*r = 5*6 = 30. Indeed, 18 does not exceed 18 and 30 is larger than 18, hence 18 is in both S and T.
b(6) = 36 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6, and both do not exceed 36, therefore 36 is in S but not T.
b(7) = 40 is not in the sequence since p*r = 5*10 = 50 and q*r = 3*10 = 30. Though 50 > 40, 30 < 40, thus 40 is neither in S nor T, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[1500], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, And[p r <= k, q r > k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]

Formula

Intersection of A363082 and A360768.

A360767 Numbers k that are neither prime power nor squarefree, such that k/rad(k) < q, where rad(k) = A007947(k) and prime q = A119288(k).

Original entry on oeis.org

12, 20, 28, 40, 44, 45, 52, 56, 60, 63, 68, 76, 84, 88, 92, 99, 104, 116, 117, 124, 132, 136, 140, 148, 152, 153, 156, 164, 171, 172, 175, 176, 184, 188, 204, 207, 208, 212, 220, 228, 232, 236, 244, 248, 260, 261, 268, 272, 275, 276, 279, 280, 284, 292, 296, 297, 304, 308, 315, 316, 325, 328, 332, 333
Offset: 1

Views

Author

Michael De Vlieger, Feb 28 2023

Keywords

Comments

Proper subsequence of A126706.
Numbers k such that there does not exist j such that 1 < j < k and rad(j) = rad(k), but j does not divide k.

Examples

			a(1) = 12, since 12/6 < 3.
a(2) = 20, since 20/10 < 5.
a(3) = 28, since 28/14 < 7.
a(4) = 40, since 40/10 < 5, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[120], Nor[SquareFreeQ[#], PrimePowerQ[#]] &], #1/#2 < #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    f(n) = if (isprimepower(n) || (n==1), 1, my(f=factor(n)[, 1]); f[2]); \\ A119288
    isok(k) = !isprimepower(k) && !issquarefree(k) && (k/rad(k) < f(k)); \\ Michel Marcus, Mar 01 2023

Formula

This sequence is { k in A126706 : k/A007947(k) < A119288(k) } = A126706 \ A360768.

A364997 Numbers k neither squarefree nor prime power such that rad(k)*A119288(k) > k but rad(k)*A053669(k) < k.

Original entry on oeis.org

40, 45, 56, 63, 88, 99, 104, 117, 136, 152, 153, 171, 175, 176, 184, 207, 208, 232, 248, 261, 272, 275, 279, 280, 296, 297, 304, 315, 325, 328, 333, 344, 351, 368, 369, 376, 387, 423, 424, 425, 440, 459, 464, 472, 475, 477, 488, 495, 496, 513, 520, 531, 536, 539
Offset: 1

Views

Author

Michael De Vlieger, Aug 16 2023

Keywords

Comments

Subset of A126706, numbers that are neither squarefree nor prime powers.
For k in this sequence, let p = A119288(k), q = A053669(k), and r = A007947(k).
A355432(k) = 0, A360543(k) > 0. There exist m < k, gcd(m,k) > 1 such that both omega(k) > omega(m) and rad(m) | k, but nondivisors m < k do not exist such that rad(m) = rad(k).

Examples

			Let b(n) = A126706(n), S = A360767, and T = A360765.
b(1) = 12 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6 = 30; both exceed 12, thus 12 is in S but not in T.
b(2) = 18 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6 = 30. Indeed, neither is less than 18, hence 18 is not in S but is in T.
b(6) = 36 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6, and both do not exceed 36, therefore 36 is not in S but is in T.
b(7) = a(1) = 40 since p*r = 5*10 = 50 and q*r = 3*10 = 30. We have both 50 > 40 and 30 < 40, thus 40 is in both S and T, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[500], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, And[p r > k, q r < k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]

Formula

Intersection of A360765 and A360767.

A372720 a(n) = A000005(n) - A008479(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 3, 1, 1, 3, 1, 4, 3, 3, 1, 4, 1, 3, 1, 4, 1, 7, 1, 1, 3, 3, 3, 4, 1, 3, 3, 5, 1, 7, 1, 4, 4, 3, 1, 4, 1, 2, 3, 4, 1, 1, 3, 5, 3, 3, 1, 10, 1, 3, 4, 1, 3, 7, 1, 4, 3, 7, 1, 4, 1, 3, 3, 4, 3, 7, 1, 5, 1, 3, 1, 10, 3, 3, 3
Offset: 1

Views

Author

Michael De Vlieger, May 13 2024

Keywords

Comments

A095960(50) = 3, a(50) = 2.
a(162) = -2 is the first negative term.

Examples

			Table of a(n), b(n) = A000005(n), and c(n) = A008479(n) for n <= 12:
  n  b(n) c(n) a(n)
 ------------------
  1    1    1    0
  2    2    1    1
  3    2    1    1
  4    3    2    1
  5    2    1    1
  6    4    1    3
  7    2    1    1
  8    4    3    1
  9    3    2    1
 10    4    1    3
 11    2    1    1
 12    6    2    4
a(12) = 4 since 12 has 6 divisors {1, 2, 3, 4, 6, 12}, and row 12 of A369609 has 2 terms {6, 12}.
a(18) = 3 since 18 has 6 divisors {1, 2, 3, 6, 9, 18}, and row 18 of A369609 has 3 terms {6, 12, 18}.
a(50) = 2 since 50 has 6 divisors {1, 2, 5, 10, 25, 50}, and row 50 of A369609 has 4 terms {10, 20, 40, 50}
a(162) = -2 since 162 has 10 divisors {1,2,3,6,9,18,27,54,81,162} but row 162 of A369609 has 12 terms {6,12,18,24,36,48,54,72,96,108,144,162}.
a(500) = 0 since 500 has as many divisors {1,2,4,5,10,20,25,50,100,125,250,500} as terms in row 500 of A369609 {10,20,40,50,80,100,160,200,250,320,400,500}.
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; DivisorSigma[0, n] - Count[Range[n/r], _?(Divisible[r, rad[#]] &)], {n, 120}]
  • PARI
    a(n) = my(f=factor(n)[, 1], s); forvec(v=vector(#f, i, [1, logint(n, f[i])]), if(prod(i=1, #f, f[i]^v[i])<=n, s++)); numdiv(n) - s; \\ after A008479 \\ Michel Marcus, Jun 03 2024

Formula

a(n) = A095960(n) for n in A303554, i.e., for squarefree n or prime powers n.
a(n) = A095960(n) for n in A360767, i.e., for nonsquarefree composite n such that omega(n) > 1 and A003557(n) < A119288(n), since A008479(n) is the number of terms k in row n of A010846 such that k <= A003557(n).
a(n) = A183093(n) - A355432(n).

A364999 Numbers k neither squarefree nor prime power such that both rad(k)*A119288(k) > k and rad(k)*A053669(k) > k.

Original entry on oeis.org

12, 20, 28, 44, 52, 60, 68, 76, 84, 92, 116, 124, 132, 140, 148, 156, 164, 172, 188, 204, 212, 220, 228, 236, 244, 260, 268, 276, 284, 292, 308, 316, 332, 340, 348, 356, 364, 372, 380, 388, 404, 412, 420, 428, 436, 444, 452, 460, 476, 492, 508, 516, 524, 532, 548
Offset: 1

Views

Author

Michael De Vlieger, Aug 16 2023

Keywords

Comments

Subset of A126706, numbers that are neither squarefree nor prime powers.
For k in this sequence, let p = A119288(k), q = A053669(k), and r = A007947(k).
A355432(k) = A360543(k) = 0. There exist neither nondivisor m < k such that rad(m) = rad(k), nor m < k, gcd(m,k) > 1 such that both omega(k) > omega(m) and rad(m) | k.
Apparently this is A081770 without the leading 4. - R. J. Mathar, Sep 05 2023
From Peter Munn, Mar 05 2024: (Start)
The preceding observation is true for the whole sequence, for reasons outlined below.
To qualify for this sequence, a number k must be smaller than 2 different multiples of rad(k): one based on a divisor, A119288(k): the other on a nondivisor, A053669(k).
For k that is not a prime power, straightforward calculations show (1) if k = 2 * rad(k) then k satisfies both of these comparisons, whereas (2) for k >= 3 * rad(k), k fails the divisor-based comparison if k is a multiple of 6 and fails the nondivisor-based comparison otherwise.
(End)

Examples

			Let b(n) = A126706(n), S = A360767, and T = A363082.
b(1) = a(1) = 12 since p*r = 3*6 = 18 and q*r = 5*6 = 30, and both exceed 12. Indeed, 12 is in both S and T.
b(2) = 18 is not in the sequence since p*r = 3*6 = 18; 18 is not in S.
b(6) = 36 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6, and both do not exceed 36.
b(7) = 40 is not in the sequence since p*r = 5*10 = 50 and q*r = 3*10 = 30. Though 50 > 40, 30 < 40, and is not in T, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[500], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, And[p r > k, q r > k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]

Formula

Intersection of A363082 and A360767.
From Peter Munn, Feb 21 2024: (Start)
a(n) = 2*A039956(n+1).
Asymptotic density is 1/Pi^2 = 0.101321183642337... (A092742). (End)
From Michael De Vlieger, Mar 08 2024: (Start)
{a(n)} = A366825 \ A366460, i.e., even terms in A366825.
A088860 = {a(n)} intersect A025487 = {a(n)} intersect A055932, where A088860(k) = 2*A002110(k). (End)
Showing 1-10 of 15 results. Next