A360589 Numbers k that set records in A355432.
1, 18, 48, 54, 162, 384, 486, 1350, 1458, 2250, 2430, 3750, 6000, 6750, 7290, 11250, 12150, 14580, 15000, 15360, 18750, 21870, 30720, 33750, 36450, 37500, 43740, 56250, 61440, 65610, 93750, 122880, 168750, 182250, 187500, 196830, 245760, 281250, 328050, 360150, 375000, 393660
Offset: 1
Keywords
Examples
Let rad(m) = A007947(m). a(1) = 1 since 1 is the empty product. a(2) = 18 since {12} is a nondivisor k < 18 such that rad(k) = rad(18). a(3) = 48 since {18, 36} are nondivisors k < 48 such that rad(k) = rad(48). a(4) = 54 since {12, 24, 36, 48} are nondivisors k < 54 such that rad(k) = rad(54), etc. Table shows prime decomposition of a(n) = Product p^e, noting multiplicity e in the pi(p)-th position. For example, a(n) = 1350 = 2 * 3^3 * 5^2, hence we write 1.3.2. a(n) = A055932(i) and has A360912(n) nondivisors k < a(n) such that rad(k) = rad(a(n)). n a(n) A067255(a(n)) i A360912(n) ---------------------------------------- 1 1 0 1 0 2 18 1.2 8 1 3 48 4.1 13 2 4 54 1.3 14 4 5 162 1.4 25 8 6 384 7.1 37 10 7 486 1.5 42 14 8 1350 1.3.2 65 16 9 1458 1.6 67 21 10 2250 1.2.3 81 23 11 2430 1.5.1 85 26 12 3750 1.1.4 99 33 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..2071
- Michael De Vlieger, Plot p^m | a(n) at (x,y) = (n, pi(p)), n = 1..2071, 24X vertical exaggeration, with a color function that represents m = 1 in black, m = 2 in red, m = 3 in orange, ... m = 34 in magenta. (Represents column "A067255(a(n))" in table in Example below.)
Programs
-
Mathematica
rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]]; t = Select[Range[2^14], Nor[SquareFreeQ[#], PrimePowerQ[#]] &]; s = Select[t, #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]; t = Table[m = s[[n]]; r = rad[m]; Count[TakeWhile[t, # < m &], _?(And[rad[#] == r, Mod[m, #] != 0] &)], {n, Length[s]}]; {1}~Join~Map[s[[FirstPosition[t, #][[1]]]] &, Union@ FoldList[Max, t]]
Comments