A299990 a(n) = A243822(n) - A000005(n).
-1, -2, -2, -3, -2, -3, -2, -4, -3, -2, -2, -4, -2, -2, -3, -5, -2, -2, -2, -4, -3, -1, -2, -5, -3, -1, -4, -4, -2, 2, -2, -6, -2, 0, -3, -4, -2, 0, -2, -5, -2, 3, -2, -3, -4, 0, -2, -5, -3, 0, -2, -3, -2, 0, -3, -5, -2, 0, -2, 2, -2, 0, -4, -7, -3, 6, -2, -2
Offset: 1
Keywords
Examples
a(6) = -3 since 6 has 4 divisors, and 4 | 6^2; A243822(6) = 1 and A000005(6) = 4; 1 - 4 = -3. Alternatively, A010846(6) = 5; 5 - 2*4 = -3. a(30) = 2 since 30 has 8 divisors and the numbers {4, 8, 9, 12, 16, 18, 20, 24, 25, 27} divide 30^e with e > 1; A243822(30) = 10 and A000005(30) = 8; 10 - 8 = 2. Alternatively, A010846(30) = 18; 18 - 2*8 = 2. Some values of a(n) and related sequences: n a(n) A010846(n) A243822(n) A000005(n) A272618(n) ---------------------------------------------------- 1 -1 1 0 1 0 2 -2 2 0 2 0 3 -2 2 0 2 0 4 -3 3 0 3 0 5 -2 2 0 2 0 6 -3 5 1 4 {4} 7 -2 2 0 2 0 8 -4 4 0 4 0 9 -3 3 0 3 0 10 -2 6 2 4 {4,8} 11 -2 2 0 2 0 12 -4 8 2 6 {8,9} ... 30 2 18 10 8 {4,8,9,12,16,18,20,24,25,27} ... 34 0 8 4 4 {4,8,16,32} ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Examination of the relationships of the species of numbers enumerated in A010846.
Crossrefs
Programs
-
Mathematica
Table[Count[Range[n], _?(PowerMod[n, Floor@ Log2@ n, #] == 0 &)] - 2 DivisorSigma[0, n], {n, 68}]
Comments