A300860 Indices of records in A300858.
1, 8, 15, 16, 26, 27, 28, 32, 44, 52, 56, 62, 64, 76, 80, 88, 96, 100, 104, 112, 122, 124, 128, 144, 160, 176, 184, 192, 200, 216, 246, 248, 250, 256, 272, 276, 282, 288, 318, 320, 324, 348, 354, 366, 372, 384, 414, 426, 432, 468, 474, 486, 516, 522, 528, 534
Offset: 1
Keywords
Examples
8 is in the sequence because A300858(n) for n < 8 is negative or 0 after A300858(1) = 0. A300858(8) = A243823(8) - A243822(8) = 1 - 0 = 1. Within the cototient of 8 there is one nondivisor (6) and it does not divide 8^e for integer e. (All prime powers m have A243822(m) = 0 and for m > 4, A243823(m) is positive.) 15 is in the sequence because -1 <= A300858(n) <= 1 for n < 15. A300858(15) = 2. Within the cototient of 15 there are 4 nondivisors; of these 3 (i.e., {6, 10, 12}) do not divide 15^e for integer e, but 9 | 15^2. Therefore 3 - 1 = 2 and 2 exceeds all values A300858(n) for n < 15.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1710
- Michael De Vlieger, Decomposition of terms in A300860 and Related Sequences.
Programs
-
Mathematica
f[n_] := Count[Range@ n, _?(PowerMod[n, Floor@ Log2@ n, #] == 0 &)]; With[{s = Array[#1 - #3 + 1 - 2 #2 + #4 & @@ {#, f@ #, EulerPhi@ #, DivisorSigma[0, #]} &, 550]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]] ]
-
PARI
a300858(n) = 1 + n + numdiv(n) - eulerphi(n) - 2*sum(k=1, n, if(gcd(n, k)-1, 0, moebius(k)*(n\k))) \\ after Michel Marcus r=-1; for(i=1, oo, if(a300858(i) > r, print1(i, ", "); r=a300858(i))) \\ Felix Fröhlich, Mar 30 2018
Comments