cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A162306 Irregular triangle in which row n contains the numbers <= n whose prime factors are a subset of prime factors of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 4, 6, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 4, 5, 8, 10, 1, 11, 1, 2, 3, 4, 6, 8, 9, 12, 1, 13, 1, 2, 4, 7, 8, 14, 1, 3, 5, 9, 15, 1, 2, 4, 8, 16, 1, 17, 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 1, 19, 1, 2, 4, 5, 8, 10, 16, 20, 1, 3, 7, 9, 21, 1, 2, 4, 8, 11, 16, 22, 1, 23
Offset: 1

Views

Author

T. D. Noe, Jun 30 2009

Keywords

Comments

Row n begins with 1, ends with n, and has A010846(n) terms.
From Michael De Vlieger, Jul 08 2014: (Start)
Prime p has {1, p} and A010846(p) = 2.
Prime power p^e has {1, p, ..., p^e} and A010846(p^e) = A000005(p^e) = e + 1.
Composite c that are not prime powers have A010846(c) = A000005(c) + A243822(c), where A243822(c) is nonzero positive, since the minimum prime divisor p of c produces at least one semidivisor (e.g., p^2 < c). Thus these have the set of divisors of c and at least one semidivisor p^2. For squareful c that are not prime powers, p^2 may divide c, but p^3 does not. The minimum squareful c = 12, 2^3 does not divide 12 yet is less than 12 and is a product of the minimum prime divisor of 12. All other even squareful c admit a power of 2 that does not divide c, since there must be another prime divisor q > 2. (End)
Numbers 1 <= k <= n such that (floor(n^k/k) - floor((n^k - 1)/k)) = 1. - Michael De Vlieger, May 26 2016
Numbers 1 <= k <= n such that k | n^e with e >= 0. - Michael De Vlieger, May 29 2018

Examples

			n =  6: {1, 2, 3, 4, 6}.
n =  7: {1, 7}.
n =  8: {1, 2, 4, 8}.
n =  9: {1, 3, 9}.
n = 10: {1, 2, 4, 5, 8, 10}.
n = 11: {1, 11}.
n = 12: {1, 2, 3, 4, 6, 8, 9, 12}.
		

Crossrefs

Cf. A007947, A010846 (number of terms in row n), A027750 (terms k that divide n), A243103 (product of terms in row n), A244974 (sum of terms in row n), A272618 (terms k that do not divide n).

Programs

  • Maple
    A:= proc(n) local F, S, s, j, p;
      F:= numtheory:-factorset(n);
      S:= {1};
      for p in F do
        S:= {seq(seq(s*p^j, j=0..floor(log[p](n/s))), s=S)}
      od;
      S
    end proc; map(op,[seq(A(n), n=1..100)]); # Robert Israel, Jul 15 2014
  • Mathematica
    pf[n_] := If[n==1, {}, Transpose[FactorInteger[n]][[1]]]; SubsetQ[lst1_, lst2_] := Intersection[lst1,lst2]==lst1; Flatten[Table[pfn=pf[n]; Select[Range[n], SubsetQ[pf[ # ],pfn] &], {n,27}]]
    (* Second program: *)
    f[x_, y_ : 0] :=
      Block[{m, n, nn, j, k, p, t, v, z},
        n = Abs[x]; nn = If[y == 0, n, y];
        If[n == 1, {1},
          z = Length@
            MapIndexed[Set[{p[#2], m[#2]}, {#1, 0}] & @@
            {#1, First[#2]} &, FactorInteger[n][[All, 1]] ];
        k = Times @@ Array[p[#]^m[#] &, z]; Set[{v, t}, {1, False}];
        Union@ Reap[Do[Set[t, k > nn];
          If[t, k /= p[v]^m[v]; m[v] = 0; v++; If[v > z, Break[]],
          v = 1; Sow[k] ]; m[v]++; k *= p[v], {i, Infinity}] ][[-1, 1]] ] ];
    Array[f, 120] (* Michael De Vlieger, Jun 18 2024 *)

Formula

Union of A027750 and nonzero terms of A272618.
Row n of this sequence is {k <= n : rad(k) | n }, where rad = A007947. - Michael De Vlieger, Jun 18 2024

A243822 Number of k < n such that rad(k) | n but k does not divide n, where rad = A007947.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 2, 1, 0, 0, 4, 0, 2, 1, 3, 0, 3, 0, 3, 0, 2, 0, 10, 0, 0, 2, 4, 1, 5, 0, 4, 2, 3, 0, 11, 0, 3, 2, 4, 0, 5, 0, 6, 2, 3, 0, 8, 1, 3, 2, 4, 0, 14, 0, 4, 2, 0, 1, 14, 0, 4, 2, 12, 0, 6, 0, 5, 3, 4, 1, 15, 0, 4, 0, 5, 0, 16, 1, 5, 3, 3, 0, 20, 1, 4, 3, 5, 1, 8, 0, 7, 2, 6
Offset: 1

Views

Author

Michael De Vlieger, Jun 11 2014

Keywords

Comments

Former name: number of "semidivisors" of n, numbers m < n that do not divide n but divide n^e for some integer e > 1. See ACM Inroads paper.

Examples

			From _Michael De Vlieger_, Aug 11 2024: (Start)
Let S(n) = row n of A162306 and let D(n) = row n of A027750.a(2) = 0 since S(2) \ D(2) = {1, 2} \ {1, 2} is null.
a(10) = 2 since S(10) \ D(10) = {1, 2, 4, 5, 8, 10} \ {1, 2, 5, 10} = {4, 8}.a(16) = 0 since S(16) \ D(16) = {1, 2, 4, 8, 16} \ {1, 2, 4, 8, 16} is null, etc.Table of a(n) and S(n) \ D(n):
   n  a(n)  row n of A272618.
  ---------------------------
   6    1   {4}
  10    2   {4, 8}
  12    2   {8, 9}
  14    2   {4, 8}
  15    1   {9}
  18    4   {4, 8, 12*, 16}
  20    2   {8, 16}
  21    1   {9}
  22    3   {4, 8, 16}
  24    3   {9, 16, 18*}
  26    3   {4, 8, 16}
  28    2   {8, 16}
  30   10   {4, 8, 9, 12, 16, 18, 20, 24, 25, 27}
Terms in A272618 marked with an asterisk are counted by A355432. All other terms are counted by A361235. (End)
		

Crossrefs

Programs

Formula

a(n) = A010846(n) - A000005(n) = card({row n of A162306} \ {row n of A027750}).
a(n) = A045763(n) - A243823(n).
a(n) = (Sum_{1<=k<=n, gcd(n,k)=1} mu(k)*floor(n/k)) - tau(n). - Michael De Vlieger, May 10 2016, after Benoit Cloitre at A010846.
From Michael De Vlieger, Aug 11 2024" (Start)
a(n) = 0 for n in A000961, a(n) > 0 for n in A024619.
a(n) = A051953(n) - A000005(n) + 1 = n - A000010(n) - A000005(n) - A243823(n) + 1.
a(n) = A355432(n) + A361235(n).
a(n) = A355432(n) for n in A360768.
a(n) = A361235(n) for n not in A360768.
a(n) = number of terms in row n of A272618.
a(n) = sum of row n of A304570. (End)

Extensions

New name from David James Sycamore, Aug 11 2024

A272619 Irregular array read by rows: n-th row contains (in ascending order) the numbers 1 <= k < n such that at least one prime divisor p of k also divides n and at least one prime divisor q of k is coprime to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 0, 10, 0, 6, 10, 12, 6, 10, 12, 6, 10, 12, 14, 0, 10, 14, 15, 0, 6, 12, 14, 15, 18, 6, 12, 14, 15, 18, 6, 10, 12, 14, 18, 20, 0, 10, 14, 15, 20, 21, 22, 10, 15, 20, 6, 10, 12, 14, 18, 20, 22, 24, 6, 12, 15, 18, 21, 24, 6, 10, 12, 18, 20, 21, 22, 24, 26, 0, 14, 21, 22
Offset: 1

Views

Author

Michael De Vlieger, May 03 2016

Keywords

Comments

The k are the "semitotatives" of n as counted by A243823(n).
All nonzero terms k are composite and pertain to composite rows n. This is because prime k must either divide or be coprime to n, and k = 1 is both a divisor of and coprime to n. Further, the terms k must have at least two distinct prime divisors p and q.
Row n for prime p contains zero, since numbers 1 <= k < p must either divide or be coprime to prime p.
Row n for prime powers p^e contains all the numbers k in the corresponding row of A133995. There is only one prime divisor p of p^e and every power 1 <= m <= e of p divides p^e, thus none of the terms of the corresponding row of A133995 are in A272618(n).
Rows n = 4 and 6 are special cases of composite n that contains zero. 4 is the smallest composite number; there are no composites k < n. 6 has the prime divisors 2 and 3, thus 5 is the smallest prime coprime to 6; the product of the minimum prime divisor and minimum prime coprime to 6 is 10, which exceeds 6 and falls outside the considered range. The situation is not so for composite n > 6. Thus rows n for composite n > 6 contain at least 1 nonzero value.
The smallest k of row n = A096014(n) < n, i.e., those values of A096014(n) pertaining to composite n > 6, a product of the smallest prime divisor p of n and the smallest prime q coprime to n. The smallest k of n are even squarefree semiprimes since 2 either divides n or is coprime to n and k is by definition a number with at least two distinct primes. The smallest k = 2p for p^2 sets record values for A096014(n) when we ignore values pertaining to prime n, n = 4, and n = 6.
In base n, 1/a(n) has a mixed recurrent expansion.

Examples

			For n = 12, the numbers 1 <= k < n such that the prime divisors p of k also divide n are {2, 3, 4, 6, 8, 9}; {2, 3, 4, 6} divide n = 12, thus row n = 12 is {8, 9}.
n:   k
1:   0
2:   0
3:   0
4:   0
5:   0
6:   0
7:   0
8:   6
9:   6
10:  6
11:  0
12: 10
13:  0
14:  6 10 12
15:  6 10 12
16:  6 10 12 14
17:  0
18: 10 14 15
19:  0
20:  6 12 14 15 18
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, pp. 144-5, Theorem 136.

Crossrefs

The union of nonzero terms of a(n) and A272618 = A133995, thus A243822(n) + A243823(n) = A045763(n).

Programs

  • Mathematica
    Table[With[{r = First /@ FactorInteger@ n}, Select[Range@ n, Function[m, And[! SubsetQ[r, First /@ FactorInteger@ m], 1 < GCD[m, n] < n]]]], {n, 30}] /. {} -> {0} // Flatten (* Michael De Vlieger, May 03 2016 *)

A133995 Irregular array read by rows: n-th row contains (in numerical order) the positive integers <= n which are neither divisors of n nor are coprime to n. A 0 is put into row n if there are no such integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 0, 6, 6, 4, 6, 8, 0, 8, 9, 10, 0, 4, 6, 8, 10, 12, 6, 9, 10, 12, 6, 10, 12, 14, 0, 4, 8, 10, 12, 14, 15, 16, 0, 6, 8, 12, 14, 15, 16, 18, 6, 9, 12, 14, 15, 18, 4, 6, 8, 10, 12, 14, 16, 18, 20, 0, 9, 10, 14, 15, 16, 18, 20, 21, 22, 10, 15, 20, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 6, 12, 15, 18, 21, 24
Offset: 1

Views

Author

Leroy Quet, Oct 01 2007

Keywords

Comments

Row n has length A264441(n).
The number of nonzero entries in row n is A045763(n).
Row n has a 0 if every positive integer <= n is coprime to n or divides n.
From Michael De Vlieger, Aug 19 2017: (Start)
When row n is not empty (and here represented by 0), the terms of row n are composite, since primes p < n must either divide or be coprime to n and the empty product 1 both divides and is coprime to all numbers. For the following, let prime p divide n and prime q be coprime to n.
Row n is empty for n < 8 except n = 6.
There are two distinct species of term m of row n. The first are nondivisor regular numbers g in A272618(n) that divide some integer power e > 1 of n. In other words, these numbers are products of primes p that also divide n and no primes q that are coprime to n, yet g itself does not divide n. Prime powers n = p^k cannot have numbers g in A272618(n) since they have only one distinct prime divisor p; all regular numbers g = p^e with 0 <= e <= k divide p^k. The smallest n = 6 for which there is a number in A272618. The number 4 is the smallest composite and is equal to n = 4 thus must divide it; 4 is coprime to 5. The number 4 is neither coprime to nor a divisor of 6.
The second are numbers h in A272619(n) that are products of at least one prime p that divides n and one prime q that is coprime to n.
The smallest n = 8 for which there is a number in A272619 is 8; the number 6 is the product of the smallest two distinct primes. 6 divides 6 and is coprime to 7. The number 6 is neither coprime to nor a divisor of the prime power 8; 4 divides 8 and does not appear in a(8).
There can be no other species since primes p <= n divide n and q < n are coprime to n, and products of primes q exclusive of any p are coprime to n.
As a consequence of these two species, rows 1 <= n <= 5 and n = 7 are empty and thus have 0 in row n.
(End)

Examples

			The divisors of 12 are: 1,2,3,4,6,12. The positive integers which are <= 12 and are coprime to 12 are: 1,5,7,11. So row 12 contains the positive integers <= 12 which are in neither of these two lists: 8,9,10.
The irregular triangle T(n, k) begins:
n\k 1  2  3  4  5  6  7 ...
1:  0
2:  0
3:  0
4:  0
5:  0
6:  4
7:  0
8:  6
9:  6
10: 4  6  8
11: 0
12: 8  9 10
13: 0
14: 4  6  8 10 12
15: 6  9 10 12
16: 6 10 12 14
17: 0
18: 4  8 10 12 14 15 16
19: 0
20: 6  8 12 14 15 16 18
... formatted by _Wolfdieter Lang_, Jan 16 2016
		

Crossrefs

Programs

  • Maple
    row:= proc(n) local r;
       r:= remove(t -> member(igcd(t, n), [1, t]), [$1..n]):
       if r = [] then 0 else op(r) fi
    end proc:
    A:= [seq](row(n), n=1..30); # Robert Israel, Jan 19 2016
  • Mathematica
    Table[Select[Range@ n, Nor[Divisible[n, #], CoprimeQ[n, #]] &] /. {} -> {0}, {n, 27}] // Flatten (* Michael De Vlieger, Aug 19 2017 *)

Formula

a(n) = union(A272618(n), A272619(n)). - Michael De Vlieger, Aug 19 2017

Extensions

More terms from Alvin Hoover Belt, Jan 21 2008
Edited by Wolfdieter Lang, Jan 16 2016

A355432 a(n) = number of k < n such that rad(k) = rad(n) and k does not divide n, where rad(k) = A007947(k).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Michael De Vlieger, Feb 22 2023

Keywords

Comments

a(n) = 0 for prime powers and squarefree numbers.

Examples

			a(1) = 18, since 18/6 >= 3. We note that rad(12) = rad(18) = 6, yet 12 does not divide 18.
a(2) = 24, since 24/6 >= 3. rad(18) = rad(24) = 6 and 24 mod 18 = 6.
a(3) = 36, since 36/6 >= 3. rad(24) = rad(36) = 6 and 36 mod 24 = 12.
a(6) = 54, since 54/6 >= 3. m in {12, 24, 36, 48} are such that rad(m) = rad(54) = 6, but none divides 54, etc.
		

Crossrefs

Programs

  • Mathematica
    rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]]; Table[Which[PrimePowerQ[n], 0, SquareFreeQ[n], 0, True, r = rad[n]; Count[Select[Range[n], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], _?(And[rad[#] == r, Mod[n, #] != 0] &)]], {n, 120}]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    a(n) = my(rn=rad(n)); sum(k=1, n-1, if (n % k, rad(k)==rn)); \\ Michel Marcus, Feb 23 2023

Formula

a(n) > 0 for n in A360768.
a(n) < A243822(n) < A010846(n).
a(n) = A008479(n) - A005361(n). - Amiram Eldar, Oct 25 2024

A079277 Largest integer k < n such that any prime factor of k is also a prime factor of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 4, 3, 8, 1, 9, 1, 8, 9, 8, 1, 16, 1, 16, 9, 16, 1, 18, 5, 16, 9, 16, 1, 27, 1, 16, 27, 32, 25, 32, 1, 32, 27, 32, 1, 36, 1, 32, 27, 32, 1, 36, 7, 40, 27, 32, 1, 48, 25, 49, 27, 32, 1, 54, 1, 32, 49, 32, 25, 64, 1, 64, 27, 64, 1, 64, 1, 64, 45, 64, 49, 72, 1, 64, 27
Offset: 2

Views

Author

Istvan Beck (istbe(AT)online.no), Feb 07 2003

Keywords

Comments

The function a(n) complements Euler's phi-function: 1) a(n)+phi(n) = n if n is a power of a prime (actually, in A285710). 2) It seems also that a(n)+phi(n) >= n for "almost all numbers" (see A285709, A208815). 3) a(2n) = n+1 if and only if n is a Mersenne prime. 4) Lim a(n^k)/n^k =1 if n has at least two prime factors and k goes to infinity.
From Michael De Vlieger, Apr 26 2017: (Start)
In other words, largest integer k < n such that k | n^e with integer e >= 0.
Penultimate term of row n in A162306. (The last term of row n in A162306 is n.)
For prime p, a(p) = 1. More generally, for n with omega(n) = 1, that is, a prime power p^e with e > 0, a(p^e) = p^(e - 1).
For n with omega(n) > 1, a(n) does not divide n. If n = pq with q = p + 2, then p^2 < n though p^2 does not divide n, yet p^2 | n^e with e > 1. If n has more than 2 distinct prime divisors p, powers p^m of these divisors will appear in the range (1..n-1) such that p^m > n/lpf(n) (lpf(n) = A020639(n)). Since a(n) is the largest of these, a(n) is not a divisor of n.
If a(n) does not divide n, then a(n) appears last in row n of A272618.
(End)

Examples

			a(10)=8 since 8 is the largest integer< 10 that can be written using only the primes 2 and 5. a(78)=72 since 72 is the largest number less than 78 that can be written using only the primes 2, 3 and 13. (78=2*3*13).
		

Crossrefs

Programs

  • Mathematica
    Table[If[n == 2, 1, Module[{k = n - 2, e = Floor@ Log2@ n}, While[PowerMod[n, e, k] != 0, k--]; k]], {n, 2, 81}] (* Michael De Vlieger, Apr 26 2017 *)
  • PARI
    a(n) = {forstep(k = n - 1, 2, -1, f = factor(k); okk = 1; for (i=1, #f~, if ((n % f[i,1]) != 0, okk = 0; break;)); if (okk, return (k));); return (1);} \\ Michel Marcus, Jun 11 2013
    
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ Andrew Lelechenko, May 09 2014
    A079277(n) = { my(r); if((n > 1 && !bitand(n,(n-1))), (n/2), r=A007947(n); if(1==n,0,k = n-1; while(A007947(k*n) <> r, k = k-1); k)); }; \\ Antti Karttunen, Apr 26 2017
    
  • Python
    from sympy import divisors
    from sympy.ntheory.factor_ import core
    def a007947(n): return max(d for d in divisors(n) if core(d) == d)
    def a(n):
        k=n - 1
        while True:
            if a007947(k*n) == a007947(n): return k
            else: k-=1
    print([a(n) for n in range(2, 101)]) # Indranil Ghosh, Apr 26 2017

Formula

Largest k < n with rad(kn) = rad(n), where rad = A007947.

A299990 a(n) = A243822(n) - A000005(n).

Original entry on oeis.org

-1, -2, -2, -3, -2, -3, -2, -4, -3, -2, -2, -4, -2, -2, -3, -5, -2, -2, -2, -4, -3, -1, -2, -5, -3, -1, -4, -4, -2, 2, -2, -6, -2, 0, -3, -4, -2, 0, -2, -5, -2, 3, -2, -3, -4, 0, -2, -5, -3, 0, -2, -3, -2, 0, -3, -5, -2, 0, -2, 2, -2, 0, -4, -7, -3, 6, -2, -2
Offset: 1

Views

Author

Michael De Vlieger, Feb 25 2018

Keywords

Comments

Since A010846(n) = A000005(n) + A243822(n), this sequence examines the balance of the two components among "regular" numbers.
Value of a(n) is generally less frequently negative as n increases.
a(1) = -1.
For primes p, a(p) = -2 since 1 | p and the cototient is restricted to the divisor p.
For perfect prime powers p^e, a(p^e) = -(e + 1), since all m < p^e in the cototient of p^e that do not have a prime factor q coprime to p^e are powers p^k with 1 < p^k <= p^e; all such p^k divide p^e.
Generally for n with A001221(n) = 1, a(n) = -1 * A000005(n), since the cototient is restricted to divisors, and in the case of p^e > 4, divisors and numbers in A272619(p^e) not counted by A010846(p^e).
For m >= 3, a(A002110(m)) is positive.
For m >= 9, a(A244052(m)) is positive.

Examples

			a(6) = -3 since 6 has 4 divisors, and 4 | 6^2; A243822(6) = 1 and A000005(6) = 4; 1 - 4 = -3. Alternatively, A010846(6) = 5; 5 - 2*4 = -3.
a(30) = 2 since 30 has 8 divisors and the numbers {4, 8, 9, 12, 16, 18, 20, 24, 25, 27} divide 30^e with e > 1; A243822(30) = 10 and A000005(30) = 8; 10 - 8 = 2. Alternatively, A010846(30) = 18; 18 - 2*8 = 2.
Some values of a(n) and related sequences:
   n  a(n) A010846(n) A243822(n) A000005(n) A272618(n)
  ----------------------------------------------------
   1   -1          1          0          1  0
   2   -2          2          0          2  0
   3   -2          2          0          2  0
   4   -3          3          0          3  0
   5   -2          2          0          2  0
   6   -3          5          1          4  {4}
   7   -2          2          0          2  0
   8   -4          4          0          4  0
   9   -3          3          0          3  0
  10   -2          6          2          4  {4,8}
  11   -2          2          0          2  0
  12   -4          8          2          6  {8,9}
  ...
  30    2         18         10          8  {4,8,9,12,16,18,20,24,25,27}
  ...
  34    0          8          4          4  {4,8,16,32}
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Count[Range[n], _?(PowerMod[n, Floor@ Log2@ n, #] == 0 &)] - 2 DivisorSigma[0, n], {n, 68}]

Formula

a(n) = A010846(n) - 2*A000005(n).

A299991 Numbers n for which A243822(n) > A000005(n).

Original entry on oeis.org

30, 42, 60, 66, 70, 74, 78, 82, 84, 86, 90, 94, 98, 102, 106, 110, 114, 118, 120, 122, 126, 130, 132, 134, 138, 140, 142, 146, 150, 154, 156, 158, 162, 165, 166, 168, 170, 174, 178, 180, 182, 186, 190, 194, 195, 198, 202, 204, 206, 210, 214, 218, 220, 222, 226
Offset: 1

Views

Author

Michael De Vlieger, Feb 25 2018

Keywords

Comments

Composite numbers m have nondivisors k in the cototient such that k | n^e with e > 1. These k appear in row n of A272618 and are enumerated by A243822(n). These nondivisors k are a kind of "regular" number along with divisors d of n; both are listed in row n of A162306 and are together enumerated by A010846(n).
This sequence lists numbers that have more nondivisors k in the cototient of n than divisors d.
This sequence contains all n for which A299990(n) is positive.
The smallest odd term is 165.
For m >= 3, A002110(m) is in a(n).
For m >= 9, A244052(m) is in a(n).

Examples

			30 is the first term since it is the smallest number for which A243822(n) > A000005(n), alternatively, for which A010846(n) > 2*A000005(n).
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 226, Function[n, Count[Range[n], _?(PowerMod[n, Floor@ Log2@ n, #] == 0 &)] > 2 DivisorSigma[0, n]]]

A299992 Composite n with A001221(n) > 1 for which A243822(n) < A000005(n).

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 35, 36, 39, 40, 44, 45, 48, 51, 52, 55, 56, 57, 63, 65, 68, 69, 72, 75, 76, 77, 80, 85, 87, 88, 91, 92, 93, 95, 96, 99, 100, 104, 108, 111, 112, 115, 116, 117, 119, 123, 124, 129, 133, 135, 136, 141, 143, 144
Offset: 1

Views

Author

Michael De Vlieger, Feb 26 2018

Keywords

Comments

Composite numbers m have nondivisors k in the cototient such that k | n^e with e > 1. These k appear in row n of A272618 and are enumerated by A243822(n). These nondivisors k are a kind of "regular" number along with divisors d of n; both are listed in row n of A162306 and are together enumerated by A045763(n).
Primes p have 2 divisors {1, p}; these two numbers constitute the cototient of p: there are no nondivisors in the cototient.
Prime powers p^i have (i + 1) divisors; all smaller powers of the same prime p, i.e., p^j with 0 <= j <= i, also divide p^i. These numbers constitute the cototient of p^i; there are no nondivisors in the cototient.
Therefore, we can ignore cases where n has no nondivisors in the cototient, since they obviously have more divisors than nondivisors therein.
This sequence lists (composite) numbers n with omega(n) > 1 that have fewer nondivisors k in the cototient of n than divisors d.
The smallest odd term is 15.
The number m = 1001 is the smallest term with A001221(m) = 3. No term less than 36,000,000 has A001221(m) > 3.
The following terms m are the smallest to have A001222(m) = {2, 3, 4, ...}: {6, 12, 24, 48, 96, 192, 384, 1152, 2304, 4608, 13824, 27648, 55296, 110592, 331776, 663552, 1327104, 3981312, 7962624, 15925248, ...}
Number of terms less than 10^k for 0 <= k <= 7: {0, 2, 44, 319, 2171, 15545, 119469, 969749}.

Examples

			6 is the first term since it is the smallest number with more than one distinct prime divisor that has more divisors (4) than numbers in A243822(6) = 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 144, Function[n, And[PrimeNu[n] > 1, Count[Range[n], _?(PowerMod[n, Floor@ Log2@ n, #] == 0 &)] < 2 DivisorSigma[0, n]]]]

A275280 Irregular triangle listing numbers m of n that have prime divisors p that also divide n, in order of appearance in a matrix of products that arranges the powers of prime divisors p of n along independent axes.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 4, 3, 6, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 4, 8, 5, 10, 1, 11, 1, 2, 4, 8, 3, 6, 12, 9, 1, 13, 1, 2, 4, 8, 7, 14, 1, 3, 9, 5, 15, 1, 2, 4, 8, 16, 1, 17, 1, 2, 4, 8, 16, 3, 6, 12, 9, 18, 1, 19, 1, 2, 4, 8, 16, 5, 10, 20, 1, 3, 9, 7, 21, 1, 2, 4, 8, 16, 11, 22, 1, 23
Offset: 1

Views

Author

Michael De Vlieger, Jul 28 2016

Keywords

Comments

Product matrix of tensors T = 1,p,p^2,...,p^e that include the powers 1 <= e of prime divisors p such that p^e <= n.
This sequence is analogous to A275055 but differs from it in that the tensors T include not only powers p^e that divide n but all powers p^e <= n.
The matrix a(n) is bounded by n, thus all products m <= n.
Let omega(n) = A001221(n). The matrix a(n) has omega(n) dimensions and is an omega(n)-dimensional simplex with (omega(n)-1) "right-angle: sides and 1 irregular surface that is bounded by n.
A027750(n) is a subset of A162306(n) and in a(n), the terms of A275055(n) appear in an contiguous omega(n)-dimensional parallelepiped (parallelotope) with 1 at the origin and n at the opposite corner. Thus the omega(n)-dimensional array described by A275055(n) is fully contained in the simplex-like matrix described by a(n). Divisors appear within the parallelepiped while nondivisors appear in the field outside the parallelepiped (see examples). Terms within the parallelepiped appear in A027750(n) while those outside appear in A272618(n).
For a(2^x + 2) there is a term m = (n-2); m != (n-1) except for n=2, since GCD(n, n-1)=1.
a(p^e) = A027750(p^e) = A162306(p^e) = A275055(p^e) for e >= 1.

Examples

			Triangle begins:
1;
1, 2;
1, 3;
1, 2, 4;
1, 5;
1, 2, 4, 3, 6;
1, 7;
1, 2, 4, 8;
1, 3, 9;
1, 2, 4, 8, 5, 10;
1, 11;
1, 2, 4, 8, 3, 6, 12, 9;
1, 13;
1, 2, 4, 8, 7, 14;
1, 3, 9, 5, 15;
1  2, 4, 8, 16;
1, 17;
1, 2, 4, 8, 16, 3, 6, 12, 9, 18;
...
2 prime divisors: n = 96
   1  2  4  8 16 32 64
   3  6 12 24 48 96
   9 18 36 72
  27 54
  81
thus a(96) = {1,2,4,8,16,32,64,3,6,12,24,48,96,9,18,36,72,27,54,81}.
The divisors of 72 (thus the terms of A275055(72)) appear in a rectangle delimited by 1 at top left and 72 at bottom right.
3 prime divisors: n = 60
(the 3 dimensional levels correspond with powers of 5)
   level 5^0:            level 5^1:         level 5^2:
   1  2  4  8 16 32  |    5 10 20 40    |   25 50
   3  6 12 24 48     |   15 30 60       |
   9 18 36           |   45             |
  27 54              |                  |
thus a(60) = {1,2,4,8,16,32,3,6,12,24,48,9,18,36,27,54,5,10,20,40,15,30,60,45,25,50}.
The divisors of 60 (thus the terms of A275055(60)) appear in a parallelepiped delimited by 1 at top left of level 5^0 and 60 at bottom right of level 5^1.
		

Crossrefs

Cf. A162306, A010846 (row length), A243103 (row product), A027750 (divisors of n), A000005 (number of divisors of n), A272618 (nondivisors m <= n that have prime divisors p that also divide n), A243822 (number of such nondivisors of n), A275055 (Product of tensor of prime divisor powers that are also divisors).

Programs

  • Mathematica
    f[n_] := If[n == 1, 1, Function[w, ToExpression@ StringJoin["With[{n=", ToString@ n, "}, Table[", ToString@ InputForm[Times @@ Map[Power @@ # &, w]], ", ", Most@ Flatten@ Map[{#, ", "} &, #], "]]"] &@ MapIndexed[Function[p, StringJoin["{", ToString@ Last@ p, ", 0, Log[", ToString@ First@ p, ", n/(", ToString@ InputForm[Times @@ Map[Power @@ # &, Take[w, First@ #2 - 1]]], ")]}"]]@ w[[First@ #2]] &, w]]@ Map[{#, ToExpression["p" <> ToString@ PrimePi@ #]} &, Reverse[FactorInteger[n][[All, 1]]]] ]; Array[f, 24] // Flatten (* Michael De Vlieger, Mar 08 2017 *)
Showing 1-10 of 28 results. Next