A280269 Irregular triangle T(n,m) read by rows: smallest power e of n that is divisible by m = term k in row n of A162306.
0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 2, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 3, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 1, 0, 1, 0, 1, 2, 1, 3, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 3, 1, 2, 4, 1, 0, 1, 0, 1, 1, 1, 2, 1, 2, 1, 0, 1, 1, 2, 1, 0, 1, 2, 3, 1, 4, 1, 0, 1, 0, 1, 1, 1, 1, 1
Offset: 1
Examples
Triangle T(n,m) begins: Triangle A162306(n,k): 1: 0 1 2: 0 1 1 2 3: 0 1 1 3 4: 0 1 1 1 2 4 5: 0 1 1 5 6: 0 1 1 2 1 1 2 3 4 6 7: 0 1 1 7 8: 0 1 1 1 1 2 4 8 9: 0 1 1 1 3 9 10: 0 1 2 1 3 1 1 2 4 5 8 10 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10202 (rows 1 <= n <= 660)
Crossrefs
Programs
-
Mathematica
Table[SelectFirst[Range[0, #], PowerMod[n, #, k] == 0 &] /. m_ /; MissingQ@ m -> Nothing &@ Floor@ Log2@ n, {n, 24}, {k, n}] // Flatten (* Version 10.2, or *) DeleteCases[#, -1] & /@ Table[If[# == {}, -1, First@ #] &@ Select[Range[0, #], PowerMod[n, #, k] == 0 &] &@ Floor@ Log2@ n, {n, 24}, {k, n}] // Flatten (* or *) DeleteCases[#, -1] & /@ Table[Boole[k == 1] + (Boole[#[[-1, 1]] == 1] (-1 + Length@ #) /. 0 -> -1) &@ NestWhileList[Function[s, {#1/s, s}]@ GCD[#1, #2] & @@ # &, {k, n}, And[First@# != 1, ! CoprimeQ @@ #] &], {n, 24}, {k, n}] // Flatten
Comments