A294306 Irregular triangle read by rows: T(n, m) = total number of times the different values appear in row n of A280269, where 0 <= m <= A280274(n).
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 4, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 5, 2, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 7, 3, 1, 2, 1, 3, 1, 1, 1, 1, 3, 1, 5, 2, 1, 1, 1, 7, 6, 3, 1, 1, 1, 1, 5
Offset: 1
Examples
Row n of A280269(10) = 0, 1, 2, 1, 3, 1, corresponding to A162306(10) = 1, 2, 4, 5, 8, 10, since 1 | 10^0, 2 | 10^1, 4 | 10^2, 5 | 10^1, 8 | 10^3, and 10 | 10^1. There is 1 zero, 3 ones, 1 two, and 1 three, thus a(10) = 1, 3, 1, 1. sum(a(10)) = A010846(10) = 6. Length of a(10) = A280274(10) + 1 = 4. Triangle begins: 1: 1 2: 1 1 3: 1 1 4: 1 2 5: 1 1 6: 1 3 1 7: 1 1 8: 1 3 9: 1 2 10: 1 3 1 1 11: 1 1 12: 1 5 2 13: 1 1 14: 1 3 1 1 15: 1 3 1 16: 1 4 17: 1 1 18: 1 5 2 1 1 19: 1 1 20: 1 5 2 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11355 (rows 1 <= n <= 2000).
- Michael De Vlieger, A294306 and indices of records in A294306.
Programs
-
Mathematica
Table[Tally[#][[All, -1]] &@ Map[SelectFirst[Range[0, Floor@ Log2@ n], Function[k, Divisible[n^k, #]]] &, Select[Range@ n, PowerMod[n, Floor@ Log2@ n, #] == 0 &]], {n, 32}] // Flatten (* Michael De Vlieger, Oct 30 2017 *)
Comments