cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A383177 Sphenic numbers k such that floor(log(k)/log(lpf(k))) = 1+floor(log(k)/log(p)) for all primes p | k such that p > lpf(k), where lpf = A020639(k).

Original entry on oeis.org

1001, 1309, 1547, 1729, 2093, 2261, 3553, 4199, 4301, 4807, 5681, 6061, 6479, 7337, 7843, 8671, 9269, 9361, 9889, 10373, 10879, 11063, 11339, 11687, 11803, 11891, 12121, 12617, 13079, 13717, 13949, 13981, 14911, 15283, 15457, 16211, 16523, 17081, 17329, 17719
Offset: 1

Views

Author

Michael De Vlieger, Apr 21 2025

Keywords

Comments

Subset of A382022, a subset of A007304.
Let primes p, q, r, p < q < r divide k.
Then floor(log(k)/log(p)) = 3 and floor(log(k)/log(q)) = floor(log(k)/log(r)) = 2.
Row a(n) of A162306 is the set {1, p, p^2, p^3, q, p*q, p^2*q, q^2, p*q^2, r, p*r, p^2*r, q*r, p*q*r, r^2}.

Examples

			Let s(n) = A010846(a(n)).
Table of a(n) for n = 1..12, showing prime factors of a(n) and
 n   a(n)  facs(a(n))  s(n)
---------------------------
 1   1001    7*11*13    15
 2   1309    7*11*17    15
 3   1547    7*13*17    15
 4   1729    7*13*19    15
 5   2093    7*13*23    15
 6   2261    7*17*19    15
 7   3553   11*17*19    15
 8   4199   13*17*19    15
 9   4301   11*17*23    15
10   4807   11*19*23    15
11   5681   13*19*23    15
12   6061   11*19*29    15
Let f(p,k) = floor(log(k)/log(p)) and let w be the list of f(p,k) across the sorted list of distinct prime factors of k.
30 = 2*3*5 is not in the sequence since f(30,2) = 4, f(30,3) = 3, f(30,5) = 2.
a(1) = 1001 = 7*11*13; f(7,1001) = 3, f(11,1001) = 2, f(13,1001) = 2.
a(2) = 1309 = 7*11*17; w(1309) = {3,2,2}, etc.
Pattern of numbers in row a(n) of A275280:
  Level r^0                    Level r^1               Level r^2
  1,   p,     p^2,  p^3   |    r,   p*r,   p^2*r   |   r^2
  q,   p*q,   p^2*q       |    q*r, p*q*r          |
  q^2, p*q^2;             |
Example: k = 1001 = 7*11*13
    1,   7,  49, 343   |    13,   91, 637   |   169
   11,  77, 539        |   143, 1001        |
  121, 847             |
		

Crossrefs

Intersection of A380995 and A382022.

Programs

  • Mathematica
    f[om_, lm_ : 0] := Block[{f, i, j, k, nn, w}, i = Abs[om]; j = 1;
      If[lm == 0, nn = Times @@ Prime@ Range[i], nn = Abs[lm]]; w = ConstantArray[1, i];
      Union@ Reap[Do[
        While[Set[k, Times @@ Map[Prime, Accumulate@w]]; k <= nn,
          If[Or[k == 1, Union[#2] == #1 - 1 & @@
            TakeDrop[Map[Floor@Log[#, k] &, FactorInteger[k][[All, 1]] ], 1] ],
            Sow[k]];
          j = 1; w[[-j]]++];
          If[j == i, Break[], j++; w[[-j]]++;
            w = PadRight[w[[;; -j]], i, 1]], {n, Infinity}] ][[-1, 1]] ];
    f[3, 20000]

Formula

A010846(a(n)) = 15.

A382926 Irregular table where row n lists numbers k in row n of A162306 for which there exists a prime p | n such that k*p > n.

Original entry on oeis.org

2, 3, 4, 5, 3, 4, 6, 7, 8, 9, 4, 5, 8, 10, 11, 6, 8, 9, 12, 13, 4, 7, 8, 14, 5, 9, 15, 16, 17, 8, 9, 12, 16, 18, 19, 5, 8, 10, 16, 20, 7, 9, 21, 4, 8, 11, 16, 22, 23, 9, 12, 16, 18, 24, 25, 4, 8, 13, 16, 26, 27, 7, 8, 14, 16, 28, 29, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30
Offset: 2

Views

Author

Michael De Vlieger, Apr 28 2025

Keywords

Comments

The number n appears in each row. For n in A024619, for all p|n, p^floor(log_p n) is in row n. Thus, the number of terms in row n for n in A024619 is at least 1+omega(n), where omega = A001221 is the number of distinct prime factors of n.

Examples

			Let s(n) = A382964(n).
Table of select rows:
 n  s(n)    row n of this sequence
--------------------------------------------------------
 6    3     3,  4,  6;
10    4     4,  5,  8, 10;
12    4     6,  8,  9, 12;
14    4     4,  7,  8, 14;
15    3     5,  9, 15;
18    5     8,  9, 12, 16, 18;
20    5     5,  8, 10, 16, 20;
21    3     7,  9, 21;
22    5     4,  8, 11, 16, 22;
24    5     9, 12, 16, 18, 24;
26    5     4,  8, 13, 16, 26;
28    5     7,  8, 14, 16, 28;
30   12     8,  9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30.
In the examples below, we place terms in row n in brackets [] among other terms in row n of A162306, presented in order of row n of A275280.
Row p^m for m > 0 and prime p is {p^m}, since multiplying p^m by p exceeds p^m.
Row 10 = {4, 5, 8, 10}, since numbers k such that rad(k) | 10 contains these numbers, furthermore, we have the following: 2 or 5 times 8 exceeds 10, 5*4 > 10, 2 or 5 times 10 exceeds 10, and 5*5 > 10.
      1    2   [4]  [8]
     [5] [10]
Row 24 = {9, 12, 16, 18, 24}, since numbers k such that rad(k) | 24 contains these numbers, furthermore, we have the following: 2 or 3 times 16 exceeds 24, 2 or 3 times 24 exceeds 24, 3*12 > 24, 2 or 3 times 18 exceeds 24, and 3*9 > 24.
      1    2    4    8  [16]
      3    6  [12] [24]
     [9] [18]
		

Crossrefs

Cf. A000961, A007947, A024619, A162306, A275280, A382964 (row lengths).

Programs

  • Mathematica
    (* First, run the "regs" function from A369609, then: *)
    Table[Select[regs[n], Function[k, AnyTrue[FactorInteger[n][[All, 1]], #*k > n &]]], {n, 2, 30}] // Flatten

Formula

For n in A000961, row n is {n}.

A384875 Irregular triangle T(n,k) = 2^(floor(n/3)-k) * nextprime(2^(n-2*(floor(n/3)-k))), with k = 0..floor(n/3)-1.

Original entry on oeis.org

6, 10, 22, 20, 34, 44, 74, 68, 134, 88, 148, 262, 136, 268, 514, 296, 524, 1042, 272, 536, 1028, 2062, 592, 1048, 2084, 4106, 1072, 2056, 4124, 8198, 1184, 2096, 4168, 8212, 16418, 2144, 4112, 8248, 16396, 32822, 4192, 8336, 16424, 32836, 65542, 4288, 8224, 16496, 32792, 65644, 131074
Offset: 3

Views

Author

Michael De Vlieger, Jun 11 2025

Keywords

Examples

			Table begins:
  n\k     0      1      2      3       4
 ---------------------------------------
  3:      6
  4:     10
  5:     22
  6:     20     34
  7:     44     74
  8:     68    134
  9:     88    148    262
 10:    136    268    514
 11:    296    524   1042
 12:    272    536   1028   2062
 13:    592   1048   2084   4106
 14:   1072   2056   4124   8198
 15:   1184   2096   4168   8212   16418
 ...
Let S = A010846.
Tables showing terms in row a(n) of A162306, listed in order of row a(n) of A275280.
T(3,1) = 6,
S(6) = 5:
 1  2  4
 3  6
T(4,1) = 10,
S(10) = 6:
 1  2  4  8
 5 10
T(5,1) = 22,
S(22) = 7:
 1  2  4  8  16
11 22
T(6,1) = 20,               T(6,2) = 34,
S(20) = 8:                 S(34) = 8:
 1  2  4  8  16             1  2  4  8  16  32
 5 10 20                   17 34
T(7,1) = 44,               T(7,2) = 74,
S(44) = 9:                 S(74) = 9:
 1  2  4  8  16  32         1  2  4  8  16  32  64
11 22 44                   37 74
T(8,1) = 68,               T(8,2) = 134,
S(68) = 10:                S(134) = 10:
 1  2  4  8  16  32  64     1  2  4  8  ...  128
17 34 68                   67 134
T(9,1) = 88,               T(9,2) = 148,            T(9,3) = 262,
S(88) = 11:                S(148) = 11:             S(262) = 11:
 1  2  4  8  16  32  64     1  2  4  8  ...  128      1   2  ... 256
11 22 44 88                37 74 148                131 262
etc.
		

Crossrefs

Programs

  • Mathematica
    Table[2^k*NextPrime[2^(n - 2*k)], {n, 3, 18}, {k, Floor[n/3], 1, -1}] // TableForm

Formula

A010846(T(n,k)) = n+2.
Showing 1-3 of 3 results.