A383178
Numbers k such that omega(k) = 4 and p^omega(k) < k^(1/4) < lpf(k)^(omega(k)+1) for all primes p | k such that p > lpf(k), where lpf = A020639(k).
Original entry on oeis.org
81719, 268801, 565471, 626603, 631997, 657169, 700321, 799459, 838457, 893513, 916453, 1108927, 1212083, 1239389, 1271209, 1354681, 1366817, 1408637, 1420763, 1500313, 1527619, 1574359, 1602137, 1639877, 1700557, 1719871, 1751173, 1758203, 1775341, 1783511, 1843969
Offset: 1
Table of n, a(n), prime decomposition of a(n), and A010846(n) = c(n) for n = 1..12:
n a(n) facs(a(n)) c(n) p*r^3
--------------------------------------------------
1 81719 11*17*19*23 51 11*19^3 = 75449
2 268801 13*23*29*31 50 13*29^3 = 317057
3 565471 17*29*31*37 51 17*31^3 = 506447
4 626603 17*29*31*41 51 17*31^3 = 506447
5 631997 19*29*31*37 51 19*31^3 = 566029
6 657169 17*29*31*43 51 17*31^3 = 506447
7 700321 19*29*31*41 51 19*31^3 = 566029
8 799459 17*31*37*41 50 17*37^3 = 861101
9 838457 17*31*37*43 50 17*37^3 = 861101
10 893513 19*31*37*41 50 19*37^3 = 962407
11 916453 17*31*37*47 51 17*37^3 = 861101
12 1108927 17*37*41*43 50 17*41^3 = 1171657
Let S(k) = row k of A162306 = {m <= k : rad(m) | k}.
Writing p^a*q^b*r^c*s^d instead as "abcd" (i.e., catenating prime power exponents), the following combinations are in S(a(n)). In brackets we show p*r^3, which is in S(a(n)) for n such that c(n) = 51, but not in S(a(n)) for n such that c(n) = 50.
0000 1000 2000 3000 4000 0010 1010 2010 3010 0020 1020 2020 0030 [1030]
0100 1100 2100 3100 0110 1110 2110 0120 1120
0200 1200 2200 0210 1210
0300 1300
.
0001 1001 2001 3001 0011 1011 2011 0021
0101 1101 2101 0111 1111
0201 1201
.
0002 1002 2002 0012
0102
.
0003
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Hasse diagram of R(268801) with logarithmic vertical scale. Gray represents the empty product, red represents primes, gold represents proper prime powers, green squarefree composites, and blue numbers that are neither squarefree nor prime powers.
- Michael De Vlieger, Plot prime(i) | a(n) at (x,y) = (n,i) for n = 1..2048, 8X vertical exaggeration. The green bar at the bottom of the graph emphasizes the x axis that rides on the top edge of the bar.
-
f[om_, lm_ : 0] := Block[{f, i, j, k, nn, w}, i = Abs[om]; j = 1;
If[lm == 0, nn = Times @@ Prime@ Range[i], nn = Abs[lm]]; w = ConstantArray[1, i];
Union@ Reap[Do[
While[Set[k, Times @@ Map[Prime, Accumulate@w]]; k <= nn,
If[Or[k == 1, Union[#2] == #1 - 1 & @@
TakeDrop[Map[Floor@Log[#, k] &, FactorInteger[k][[All, 1]] ], 1] ],
Sow[k]];
j = 1; w[[-j]]++];
If[j == i, Break[], j++; w[[-j]]++;
w = PadRight[w[[;; -j]], i, 1]], {n, Infinity}] ][[-1, 1]] ];
f[4, 2000000]
A383179
Numbers k such that omega(k) = 5 and p^omega(k) < k^(1/5) < lpf(k)^(omega(k)+1) for all primes p | k such that p > lpf(k), where lpf = A020639(k).
Original entry on oeis.org
101007559, 112442377, 145352341, 370621421, 392748073, 396181519, 403811399, 496492847, 510478561, 530733733, 540954893, 545683979, 552435703, 578262127, 580407131, 585416939, 590534717, 594163571, 620435209, 625790521, 633456391, 635140369, 643418423, 651300233
Offset: 1
Table of n, a(n), prime decomposition of a(n), and A010846(n) = c(n) for n = 1..12 and n = 209 (the smallest term with c(n) = 176):
n a(n) facs(a(n)) c(a(n))
--------------------------------------
1 101007559 23*41*43*47*53 180
2 112442377 23*41*43*47*59 182
3 145352341 23*43*47*53*59 179
4 370621421 29*53*59*61*67 179
5 392748073 29*53*59*61*71 180
6 396181519 31*53*59*61*67 179
7 403811399 29*53*59*61*73 181
8 496492847 29*59*61*67*71 179
9 510478561 29*59*61*67*73 179
10 530733733 31*59*61*67*71 179
11 540954893 29*59*61*71*73 179
12 545683979 31*59*61*67*73 179
209 3433936673 41*83*97*101*103 176
-
f[om_, lm_ : 0] := Block[{f, i, j, k, nn, w}, i = Abs[om]; j = 1;
If[lm == 0, nn = Times @@ Prime@ Range[i], nn = Abs[lm]]; w = ConstantArray[1, i];
Union@ Reap[Do[
While[Set[k, Times @@ Map[Prime, Accumulate@w]]; k <= nn,
If[Or[k == 1, Union[#2] == #1 - 1 & @@
TakeDrop[Map[Floor@Log[#, k] &, FactorInteger[k][[All, 1]] ], 1] ],
Sow[k]];
j = 1; w[[-j]]++];
If[j == i, Break[], j++; w[[-j]]++;
w = PadRight[w[[;; -j]], i, 1]], {n, Infinity}] ][[-1, 1]] ];
f[5, 10^9, 5]
A384000
Smallest number k with n distinct prime factors such that A010846(k) = A024718(n) (a tight lower bound), or -1 if such k does not exist.
Original entry on oeis.org
1, 2, 6, 1001, 268801, 3433936673, 2603508937756211
Offset: 0
Table of a(n), n = 0..6, showing prime decomposition and cardinality of row a(n) of A162306, c(n) = A010846(a(n)) = A024718(n).
n a(n) c(n) prime factors of a(n) a(n)
----------------------------------------------------------------------
0 1 1 -
1 2 2 2 A000040(1)
2 6 5 2, 3 A138109(1)
3 1001 15 7, 11, 13 A383177(1)
4 268801 50 13, 23, 29, 31 A383178(2)
5 3433936673 176 41, 83, 97, 101, 103 A383179(209)
6 2603508937756211 638 163, 373, 439, 457, 461, 463
Tables of terms m in r(a(n)) = row a(n) of A162306, writing instead only exponents i of prime power factors p^i | m for each p | a(n), written in order of the prime base:
For n = 2, i.e., squarefree semiprime k in A138109 (that achieves the lower bound), we have the following ordered exponent combinations in a rank-2 table:
00 10 20
01 11
Thus row 6 of A162306 has the following elements:
1 2 4
3 6
For n = 3, i.e., sphenic k in A383177 (that achieves the lower bound), we have the following ordered exponent combinations in a rank-3 table:
000 100 200 300 001 101 201 002
010 110 210 011 111
020 120
Thus row 1001 of A162306 has the following elements:
1 7 49 343 13 91 637 169
11 77 539 141 1001
121 857
Cf.
A001700,
A001221,
A005117,
A007947,
A010846,
A024718,
A138109,
A162306,
A383177,
A383178,
A383179.
Showing 1-3 of 3 results.
Comments