A383179 Numbers k such that omega(k) = 5 and p^omega(k) < k^(1/5) < lpf(k)^(omega(k)+1) for all primes p | k such that p > lpf(k), where lpf = A020639(k).
101007559, 112442377, 145352341, 370621421, 392748073, 396181519, 403811399, 496492847, 510478561, 530733733, 540954893, 545683979, 552435703, 578262127, 580407131, 585416939, 590534717, 594163571, 620435209, 625790521, 633456391, 635140369, 643418423, 651300233
Offset: 1
Keywords
Examples
Table of n, a(n), prime decomposition of a(n), and A010846(n) = c(n) for n = 1..12 and n = 209 (the smallest term with c(n) = 176): n a(n) facs(a(n)) c(a(n)) -------------------------------------- 1 101007559 23*41*43*47*53 180 2 112442377 23*41*43*47*59 182 3 145352341 23*43*47*53*59 179 4 370621421 29*53*59*61*67 179 5 392748073 29*53*59*61*71 180 6 396181519 31*53*59*61*67 179 7 403811399 29*53*59*61*73 181 8 496492847 29*59*61*67*71 179 9 510478561 29*59*61*67*73 179 10 530733733 31*59*61*67*71 179 11 540954893 29*59*61*71*73 179 12 545683979 31*59*61*67*73 179 209 3433936673 41*83*97*101*103 176
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Plot prime(i) | a(n) at (x,y) = (n,i) for n = 1..2048, 8X vertical exaggeration. The green bar at the bottom of the graph emphasizes the x axis that rides on the top edge of the bar.
Programs
-
Mathematica
f[om_, lm_ : 0] := Block[{f, i, j, k, nn, w}, i = Abs[om]; j = 1; If[lm == 0, nn = Times @@ Prime@ Range[i], nn = Abs[lm]]; w = ConstantArray[1, i]; Union@ Reap[Do[ While[Set[k, Times @@ Map[Prime, Accumulate@w]]; k <= nn, If[Or[k == 1, Union[#2] == #1 - 1 & @@ TakeDrop[Map[Floor@Log[#, k] &, FactorInteger[k][[All, 1]] ], 1] ], Sow[k]]; j = 1; w[[-j]]++]; If[j == i, Break[], j++; w[[-j]]++; w = PadRight[w[[;; -j]], i, 1]], {n, Infinity}] ][[-1, 1]] ]; f[5, 10^9, 5]
Comments