cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A384001 Irregular triangle T(n,j,k), j = 1..A024718(n), k = 1..n, where row 1 = {(0), (1)}, and row n = union of n-tuples whose sum s < n, and the n-tuples formed by appending s to the (n-1)-tuples in row n-1.

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 2, 0, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 2
Offset: 1

Views

Author

Michael De Vlieger, May 21 2025

Keywords

Comments

Terms in row n are sorted lexicographically.
Row n is created by finding n-tuples w with elements from 0..n-1, taking only those w whose sums are less than n.
For example, row n = 3 contains 3-tuples w that have elements from 0..2, i.e., {(0,0,0), (0,0,1), (0,0,2), (0,1,0), (0,1,1), (0,2,0), (1,0,0), (1,0,1), (1,1,0), (2,0,0)}.
Let s be the sum of w. Then we take all elements w of row n-1 and append n-s to w to obtain certain 3-tuples with elements from 0..n whose sum s = n.
Continuing the example, row 2 = {(0,0), (0,1), (0,2), (1,0), (1,1)}, which, adding n-s to the right end gives {(0,0,3), (0,1,2), (0,2,1), (1,0,2), (1,1,1)}.
Let p_i be the i-th smallest prime divisor of N = A384000(n) (where i is not necessarily the i-th prime). Then, the terms m in row N of A162306 are of the form m = Product_{i..n} p_i^T(n,j,n-k+1). For instance, for N = 6, we have row 6 of A162306 = {1, 2, 3, 4, 6}, which is {2^0*3^0, 2^1*3^0, 2^2*3^0, 2^0*3^1, 2^1*3^1} = {1, 2, 4, 3, 6}, sorted.

Examples

			Table begins:
  1:   (0), (1);
  2:   (0, 0), (0, 1), (0, 2), (1, 0), (1, 1);
  3:   (0,0,0), (0,0,1), (0,0,2), (0,0,3), (0,1,0),
       (0,1,1), (0,1,2), (0,2,0), (0,2,1), (1,0,0),
       (1,0,1), (1,0,2), (1,1,0), (1,1,1), (2,0,0)
  etc.
Row 2 arranged as a rank 2 table, concatenating T(2,j,k), k = 1..2:
00   10   20
01   11
.
Row 3 arranged as a rank 3 table, concatenating T(3,j,k), k = 1..3:
000  001  002  003     100  101  102    200
010  011  012          110  111
020  021
		

Crossrefs

Programs

  • Mathematica
    nn = 4; w[0] = {{0}};
    Do[If[n == 1, Set[w[1], {{0}, {1}}],
      Set[w[n], Union@ Join[Select[Tuples[Range[0, n - 1], n], Total[#] < n &],
        Map[Append[#, n - Total[#]] &, w[n - 1] ] ] ] ], {n, nn}];
    Flatten@ Array[w, nn]

Formula

Length of row n = n*A024718(n).

A384960 a(n) = smallest sphenic number k such that A010846(k) = n.

Original entry on oeis.org

1001, 105, 231, 30, 42, 70, 110, 66, 78, 170, 102, 114, 138, 370, 174, 826, 222, 246, 258, 318, 354, 402, 438, 498, 534, 582, 654, 762, 786, 894, 978, 1038, 1158, 1338, 1506, 1542, 1758, 1986, 2082, 2202, 2334, 2598, 2922, 3126, 3462, 3918, 4098, 4398, 4614, 5262
Offset: 15

Views

Author

Michael De Vlieger, Jul 06 2025

Keywords

Comments

a(1) = A384000(3) = 1001; A010846(1001) = A024718(3) = 15; 1001 is the smallest number k with 3 distinct prime factors that has the smallest possible number of terms in row k of A162306, i.e., m <= k such that rad(m) | k.
For n > 30, 6 | a(n).

Examples

			Table of a(n) indicating prime factors and S, where S = {ceiling(log_p a(n))} for all primes p that divide a(n), in order of the magnitude of p.
                                Prime power factor
                                    1111223344455
 n  m=a(n) pi(facs(m))    S     23571379391713739
-------------------------------------------------
15   1001   4.5.6       4.3.3   ...111
16    105   2.3.4       5.3.3   .111
17    231   2.4.5       5.3.3   .1.11
18     30   1.2.3       5.4.3   111
19     42   1.2.4       6.4.2   11.1
20     70   1.3.4       7.3.3   1.11
21    110   1.3.5       7.3.2   1.1.1
22     66   1.2.5       7.4.2   11..1
23     78   1.2.6       7.4.2   11...1
24    170   1.3.7       8.4.2   1.1...1
25    102   1.2.7       7.5.2   11....1
26    114   1.2.8       7.5.2   11.....1
27    138   1.2.9       8.5.2   11......1
28    370   1.3.12      9.4.2   1.1........1
29    174   1.2.10      8.5.2   11.......1
30    826   1.4.17     10.4.2   1..1............1
31    222   1.2.12      8.5.2   11.........1
32    246   1.2.13      8.6.2   11..........1
33    258   1.2.14      9.6.2   11...........1
34    318   1.2.16      9.6.2   11.............1
		

Crossrefs

Programs

  • Mathematica
    (* See Mathematica code link for function definitions for kappaomega and theta *)
    s =  kappaomega[3, 6000]; t = Map[theta, s];
    Map[s[[FirstPosition[t, #][[1]] ]] &, Union[t]]
Showing 1-2 of 2 results.