A384001
Irregular triangle T(n,j,k), j = 1..A024718(n), k = 1..n, where row 1 = {(0), (1)}, and row n = union of n-tuples whose sum s < n, and the n-tuples formed by appending s to the (n-1)-tuples in row n-1.
Original entry on oeis.org
0, 1, 0, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 2, 0, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 2
Offset: 1
Table begins:
1: (0), (1);
2: (0, 0), (0, 1), (0, 2), (1, 0), (1, 1);
3: (0,0,0), (0,0,1), (0,0,2), (0,0,3), (0,1,0),
(0,1,1), (0,1,2), (0,2,0), (0,2,1), (1,0,0),
(1,0,1), (1,0,2), (1,1,0), (1,1,1), (2,0,0)
etc.
Row 2 arranged as a rank 2 table, concatenating T(2,j,k), k = 1..2:
00 10 20
01 11
.
Row 3 arranged as a rank 3 table, concatenating T(3,j,k), k = 1..3:
000 001 002 003 100 101 102 200
010 011 012 110 111
020 021
-
nn = 4; w[0] = {{0}};
Do[If[n == 1, Set[w[1], {{0}, {1}}],
Set[w[n], Union@ Join[Select[Tuples[Range[0, n - 1], n], Total[#] < n &],
Map[Append[#, n - Total[#]] &, w[n - 1] ] ] ] ], {n, nn}];
Flatten@ Array[w, nn]
A384960
a(n) = smallest sphenic number k such that A010846(k) = n.
Original entry on oeis.org
1001, 105, 231, 30, 42, 70, 110, 66, 78, 170, 102, 114, 138, 370, 174, 826, 222, 246, 258, 318, 354, 402, 438, 498, 534, 582, 654, 762, 786, 894, 978, 1038, 1158, 1338, 1506, 1542, 1758, 1986, 2082, 2202, 2334, 2598, 2922, 3126, 3462, 3918, 4098, 4398, 4614, 5262
Offset: 15
Table of a(n) indicating prime factors and S, where S = {ceiling(log_p a(n))} for all primes p that divide a(n), in order of the magnitude of p.
Prime power factor
1111223344455
n m=a(n) pi(facs(m)) S 23571379391713739
-------------------------------------------------
15 1001 4.5.6 4.3.3 ...111
16 105 2.3.4 5.3.3 .111
17 231 2.4.5 5.3.3 .1.11
18 30 1.2.3 5.4.3 111
19 42 1.2.4 6.4.2 11.1
20 70 1.3.4 7.3.3 1.11
21 110 1.3.5 7.3.2 1.1.1
22 66 1.2.5 7.4.2 11..1
23 78 1.2.6 7.4.2 11...1
24 170 1.3.7 8.4.2 1.1...1
25 102 1.2.7 7.5.2 11....1
26 114 1.2.8 7.5.2 11.....1
27 138 1.2.9 8.5.2 11......1
28 370 1.3.12 9.4.2 1.1........1
29 174 1.2.10 8.5.2 11.......1
30 826 1.4.17 10.4.2 1..1............1
31 222 1.2.12 8.5.2 11.........1
32 246 1.2.13 8.6.2 11..........1
33 258 1.2.14 9.6.2 11...........1
34 318 1.2.16 9.6.2 11.............1
- Michael De Vlieger, Table of n, a(n) for n = 15..300
- Michael De Vlieger, Plot of terms k = p^a*q^b*r^c, primes p < q < r, in row a(n) of A162306, n = 15..50, at (x,y,z) = (a,b,c). For a(n) there are n blocks in each diagram.
- Michael De Vlieger, Mathematica code.
-
(* See Mathematica code link for function definitions for kappaomega and theta *)
s = kappaomega[3, 6000]; t = Map[theta, s];
Map[s[[FirstPosition[t, #][[1]] ]] &, Union[t]]
Showing 1-2 of 2 results.
Comments