cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A048804 Triangle: T(n,k)=b(n)/(b(k)*b(n-k)) where b is A048803.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 3, 2, 1, 1, 5, 5, 5, 5, 1, 1, 6, 15, 10, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 2, 7, 14, 35, 14, 7, 2, 1, 1, 3, 3, 7, 21, 21, 7, 3, 3, 1, 1, 10, 15, 10, 35, 42, 35, 10, 15, 10, 1, 1, 11, 55, 55, 55, 77, 77, 55, 55, 55, 11, 1, 1, 6, 33, 110, 165, 66
Offset: 0

Views

Author

Christian G. Bower, Apr 15 1999

Keywords

Examples

			1;
1,1;
1,2,1;
1,3,3,1;
1,2,3,2,1;
1,5,5,5,5,1;
where the last batch arises from 60/(1*60), 60/(1*12), 60/(2*6), 60/(6*2), 60/(12*1), 60/(60*1).
		

Programs

A352372 Triangle read by rows. Let R(n, k) = Y(n, k, B) where Y are the partial Bell polynomials and B is the list [Bernoulli(j, 1), j = 0..n]. T(n, k) are R(n, k) normalized by the lcm of the denominators of the terms in row n (A048803).

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 9, 6, 0, 0, 17, 36, 12, 0, -2, 50, 325, 300, 60, 0, 0, 28, 2475, 5250, 2700, 360, 0, 60, -882, 14161, 77175, 80850, 26460, 2520, 0, 0, -608, 5488, 239267, 499800, 311640, 70560, 5040, 0, -504, 6480, -57404, 735588, 3563721, 3969000, 1640520, 272160, 15120
Offset: 0

Views

Author

Peter Luschny, Mar 14 2022

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0,    1;
[2] 0,    1,     2;
[3] 0,    1,     9,      6;
[4] 0,    0,    17,     36,      12;
[5] 0,   -2,    50,    325,     300,      60;
[6] 0,    0,    28,   2475,    5250,    2700,     360;
[7] 0,   60,  -882,  14161,   77175,   80850,   26460,   2520;
[8] 0,    0,  -608,   5488,  239267,  499800,  311640,  70560,  5040;
.
For example row 7 is 2520*[R(7, k), k = 0..7] = 2520*[0, 1/42, -7/20, 2023/360, 245/8, 385/12, 21/2, 1] since lcm(1, 42, 20, 360, 8, 12, 2, 1) = A048803(7) = 2520. Conversely, since R(n, n) = 1 and T(n, n) = Product_{k=1..n} rad(k), the R(n, k) can be obtained by dividing the terms of row n by T(n, n).
		

Crossrefs

Cf. A027641/A027642, A048803, A007947, A264428 (Bell transform).

Programs

  • Mathematica
    B[n_, k_] := BellY[n, k, Table[BernoulliB[j, 1], {j, 0, n}]];
    P[n_] := Select[Divisors[n], PrimeQ];
    T[n_, k_] := B[n, k] Product[Product[p, {p, P[j]}], {j, 1, n}];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten

Formula

T(n, n) = Product_{k=1..n} rad(k) = Product_{k=1..n} A007947(k) = A048803(n).

A007947 Largest squarefree number dividing n: the squarefree kernel of n, rad(n), radical of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 2, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38, 77, 78
Offset: 1

Views

Author

R. Muller, Mar 15 1996

Keywords

Comments

Multiplicative with a(p^e) = p.
Product of the distinct prime factors of n.
a(k)=k for k=squarefree numbers A005117. - Lekraj Beedassy, Sep 05 2006
A note on square roots of numbers: we can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n), b*c = A019554(n) = "outer square root" of n, and a(n) = lcm(a(b),c). Unless n is biquadrateful (A046101), a(n) = lcm(b,c). [Edited by Jeppe Stig Nielsen, Oct 10 2021, and Andrey Zabolotskiy, Feb 12 2025]
a(n) = A128651(A129132(n-1) + 2) for n > 1. - Reinhard Zumkeller, Mar 30 2007
Also the least common multiple of the prime factors of n. - Peter Luschny, Mar 22 2011
The Mobius transform of the sequence generates the sequence of absolute values of A097945. - R. J. Mathar, Apr 04 2011
Appears to be the period length of k^n mod n. For example, n^12 mod 12 has period 6, repeating 1,4,9,4,1,0, so a(12)= 6. - Gary Detlefs, Apr 14 2013
a(n) differs from A014963(n) when n is a term of A024619. - Eric Desbiaux, Mar 24 2014
a(n) is also the smallest base (also termed radix) for which the representation of 1/n is of finite length. For example a(12) = 6 and 1/12 in base 6 is 0.03, which is of finite length. - Lee A. Newberg, Jul 27 2016
a(n) is also the divisor k of n such that d(k) = 2^omega(n). a(n) is also the smallest divisor u of n such that n divides u^n. - Juri-Stepan Gerasimov, Apr 06 2017

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 2*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 2*x^8 + 3*x^9 + ... - _Michael Somos_, Jul 15 2018
		

Crossrefs

See A007913, A062953, A000188, A019554, A003557, A066503, A087207 for other properties related to square and squarefree divisors of n.
More general factorization-related properties, specific to n: A020639, A028234, A020500, A010051, A284318, A000005, A001221, A005361, A034444, A014963, A128651, A267116.
Range of values is A005117.
Bisections: A099984, A099985.
Sequences about numbers that have the same squarefree kernel: A065642, array A284311 (A284457).
A003961, A059896 are used to express relationship between terms of this sequence.

Programs

  • Haskell
    a007947 = product . a027748_row  -- Reinhard Zumkeller, Feb 27 2012
    
  • Magma
    [ &*PrimeDivisors(n): n in [1..100] ]; // Klaus Brockhaus, Dec 04 2008
    
  • Maple
    with(numtheory); A007947 := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := mul(t1[i][1],i=1..nops(t1)); end;
    A007947 := n -> ilcm(op(numtheory[factorset](n))):
    seq(A007947(i),i=1..69); # Peter Luschny, Mar 22 2011
    A:= n -> convert(numtheory:-factorset(n),`*`):
    seq(A(n),n=1..100); # Robert Israel, Aug 10 2014
    seq(NumberTheory:-Radical(n), n = 1..78); # Peter Luschny, Jul 20 2021
  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger@ n); Array[rad, 78] (* Robert G. Wilson v, Aug 29 2012 *)
    Table[Last[Select[Divisors[n],SquareFreeQ]],{n,100}] (* Harvey P. Dale, Jul 14 2014 *)
    a[ n_] := If[ n < 1, 0, Sum[ EulerPhi[d] Abs @ MoebiusMu[d], {d, Divisors[ n]}]]; (* Michael Somos, Jul 15 2018 *)
    Table[Product[p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 20 2020 *)
  • PARI
    a(n) = factorback(factorint(n)[,1]); \\ Andrew Lelechenko, May 09 2014
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X - X)/(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
    
  • Python
    from sympy import primefactors, prod
    def a(n): return 1 if n < 2 else prod(primefactors(n))
    [a(n) for n in range(1, 51)]  # Indranil Ghosh, Apr 16 2017
    
  • Sage
    def A007947(n): return mul(p for p in prime_divisors(n))
    [A007947(n) for n in (1..60)] # Peter Luschny, Mar 07 2017
    
  • Scheme
    (define (A007947 n) (if (= 1 n) n (* (A020639 n) (A007947 (A028234 n))))) ;; ;; Needs also code from A020639 and A028234. - Antti Karttunen, Jun 18 2017

Formula

If n = Product_j (p_j^k_j) where p_j are distinct primes, then a(n) = Product_j (p_j).
a(n) = Product_{k=1..A001221(n)} A027748(n,k). - Reinhard Zumkeller, Aug 27 2011
Dirichlet g.f.: zeta(s)*Product_{primes p} (1+p^(1-s)-p^(-s)). - R. J. Mathar, Jan 21 2012
a(n) = Sum_{d|n} phi(d) * mu(d)^2 = Sum_{d|n} |A097945(d)|. - Enrique Pérez Herrero, Apr 23 2012
a(n) = Product_{d|n} d^moebius(n/d) (see Billal link). - Michel Marcus, Jan 06 2015
a(n) = n/( Sum_{k=1..n} (floor(k^n/n)-floor((k^n - 1)/n)) ) = e^(Sum_{k=2..n} (floor(n/k) - floor((n-1)/k))*A010051(k)*M(k)) where M(n) is the Mangoldt function. - Anthony Browne, Jun 17 2016
a(n) = n/A003557(n). - Juri-Stepan Gerasimov, Apr 07 2017
G.f.: Sum_{k>=1} phi(k)*mu(k)^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 11 2017
From Antti Karttunen, Jun 18 2017: (Start)
a(1) = 1; for n > 1, a(n) = A020639(n) * a(A028234(n)).
a(n) = A019565(A087207(n)). (End)
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)). - Vaclav Kotesovec, Dec 18 2019
From Peter Munn, Jan 01 2020: (Start)
a(A059896(n,k)) = A059896(a(n), a(k)).
a(A003961(n)) = A003961(a(n)).
a(n^2) = a(n).
a(A225546(n)) = A019565(A267116(n)). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065463/2. - Vaclav Kotesovec, Jun 24 2020
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))^2.
a(n) = Sum_{k=1..n} mu(gcd(n,k))^2*phi(gcd(n,k))/phi(n/gcd(n,k)).
For n>1, Sum_{k=1..n} a(gcd(n,k))*mu(a(gcd(n,k)))*phi(gcd(n,k))/gcd(n,k) = 0.
For n>1, Sum_{k=1..n} a(n/gcd(n,k))*mu(a(n/gcd(n,k)))*phi(gcd(n,k))*gcd(n,k) = 0. (End)
a(n) = (-1)^omega(n) * Sum_{d|n} mu(d)*psi(d), where omega = A001221 and psi = A001615. - Ridouane Oudra, Aug 01 2025

Extensions

More terms from several people including David W. Wilson
Definition expanded by Jonathan Sondow, Apr 26 2013

A013939 Partial sums of sequence A001221 (number of distinct primes dividing n).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 17, 19, 20, 21, 23, 24, 26, 28, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 45, 47, 49, 51, 53, 54, 56, 58, 60, 61, 64, 65, 67, 69, 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 93, 96, 97, 99, 101, 102, 104, 107, 108, 110, 112
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a013939 n = a013939_list !! (n-1)
    a013939_list = scanl1 (+) $ map a001221 [1..]
    -- Reinhard Zumkeller, Feb 16 2012
    
  • Magma
    [(&+[Floor(n/NthPrime(k)): k in [1..n]]): n in [1..70]]; // G. C. Greubel, Nov 24 2018
    
  • Maple
    A013939 := proc(n) option remember;  `if`(n = 1, 0, a(n) + iquo(n+1, ithprime(n+1))) end:
    seq(A013939(i), i = 1..69);  # Peter Luschny, Jul 16 2011
  • Mathematica
    a[n_] := Sum[Floor[n/Prime[k]], {k, 1, n}]; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, Jun 11 2012, from 2nd formula *)
    Accumulate[PrimeNu[Range[120]]] (* Harvey P. Dale, Jun 05 2015 *)
  • PARI
    t=0;vector(99,n,t+=omega(n)) \\ Charles R Greathouse IV, Jan 11 2012
    
  • PARI
    a(n)=my(s);forprime(p=2,n,s+=n\p);s \\ Charles R Greathouse IV, Jan 11 2012
    
  • PARI
    a(n) = sum(k=1, sqrtint(n), k * (primepi(n\k) - primepi(n\(k+1)))) + sum(k=1, n\(sqrtint(n)+1), if(isprime(k), n\k, 0)); \\ Daniel Suteu, Nov 24 2018
    
  • Python
    from sympy.ntheory import primefactors
    print([sum(len(primefactors(k)) for k in range(1,n+1)) for n in range(1, 121)]) # Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy import primerange
    def A013939(n): return sum(n//p for p in primerange(n+1)) # Chai Wah Wu, Oct 06 2024
    
  • Sage
    [sum(floor(n/nth_prime(k)) for k in (1..n)) for n in (1..70)] # G. C. Greubel, Nov 24 2018

Formula

a(n) = Sum_{k <= n} omega(k).
a(n) = Sum_{k = 1..n} floor( n/prime(k) ).
a(n) = a(n-1) + A001221(n).
a(n) = A093614(n) - A048865(n); see also A006218.
A027748(a(A000040(n))+1) = A000040(n), A082287(a(n)+1) = n.
a(n) = Sum_{k=1..n} pi(floor(n/k)). - Vladeta Jovovic, Jun 18 2006
a(n) = n log log n + O(n). - Charles R Greathouse IV, Jan 11 2012
a(n) = n*(log log n + B) + o(n), where B = 0.261497... is the Mertens constant A077761. - Arkadiusz Wesolowski, Oct 18 2013
G.f.: (1/(1 - x))*Sum_{k>=1} x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Jan 02 2017
a(n) = Sum_{k=1..floor(sqrt(n))} k * (pi(floor(n/k)) - pi(floor(n/(k+1)))) + Sum_{p prime <= floor(n/(1+floor(sqrt(n))))} floor(n/p). - Daniel Suteu, Nov 24 2018
a(n) = Sum_{k>=1} k * A346617(n,k). - Alois P. Heinz, Aug 19 2021
a(n) = A001222(A048803(n+1)). - Flávio V. Fernandes, Jan 14 2025

Extensions

More terms from Henry Bottomley, Jul 03 2001

A060238 a(n) = det(M) where M is an n X n matrix with M[i,j] = lcm(i,j).

Original entry on oeis.org

1, 1, -2, 12, -48, 960, 11520, -483840, 3870720, -69672960, -2786918400, 306561024000, 7357464576000, -1147764473856000, -96412215803904000, -11569465896468480000, 185111454343495680000, -50350315581430824960000, -1812611360931509698560000
Offset: 0

Views

Author

MCKAY john (mckay(AT)cs.concordia.ca), Mar 21 2001

Keywords

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 695, pp. 90, 297-298, Ellipses, Paris, 2004.
  • J. Sandor and B. Crstici, Handbook of Number Theory II, Springer, 2004, p. 265, eq. 10.

Crossrefs

Programs

Formula

For n >= 2, a(n) = n! * Product_{j=2..n} Product_{p|j} (1-p) (where the second product is over all primes p that divide j) (cf. A023900). - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001
a(n) = n! * Product_{p<=n} (1-p)^floor(n/p) where the product runs through the primes. - Benoit Cloitre, Jan 31 2008
a(n) = A000142(n) * A085542(n). - Enrique Pérez Herrero, Jun 08 2010
a(n) = A001088(n) * A048803(n) * (-1)^A013939(n). - Amiram Eldar, Dec 19 2018
a(n) = Product_{k=1..n} (-1)^A001221(k) * A000010(k) * A007947(k) [De Koninck & Mercier]. - Bernard Schott, Dec 11 2020

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 25 2023

A277174 a(n) = Product_{i=1..n} i*rad(i) where rad(n) = A007947(n).

Original entry on oeis.org

1, 1, 4, 36, 288, 7200, 259200, 12700800, 203212800, 5486745600, 548674560000, 66389621760000, 4780052766720000, 807828917575680000, 158334467844833280000, 35625255265087488000000, 1140008168482799616000000, 329462360691529089024000000
Offset: 0

Views

Author

Peter Luschny, Oct 02 2016

Keywords

Crossrefs

Programs

  • Maple
    A277174 := proc(n) local rad, i;
    rad := n -> mul(k, k in numtheory:-factorset(n));
    mul(i * rad(i), i=1..n) end:
    seq(A277174(i), i=0..17);
  • Mathematica
    Table[Product[i Last@ Select[Divisors@ i, SquareFreeQ], {i, n}], {n, 0, 17}] (* Michael De Vlieger, Oct 02 2016 *)
  • PARI
    a(n) = prod(i=1, n, i*factorback(factorint(i)[, 1])); \\ Michel Marcus, Oct 03 2016

Formula

a(n) = n! * A048803(n). - Robert Israel, Oct 02 2016

A368048 a(n) = lcm_{p in Partitions(n)} (Product_{t in p}(t + m)), where m = 2.

Original entry on oeis.org

1, 3, 36, 540, 6480, 136080, 8164800, 24494400, 293932800, 48498912000, 4073908608000, 158882435712000, 9532946142720000, 28598838428160000, 343186061137920000, 612587119131187200000, 7351045429574246400000, 419009589485732044800000, 276546329060583149568000000
Offset: 0

Views

Author

Peter Luschny, Dec 12 2023

Keywords

Comments

With m = 0, the cumulative radical A048803 is computed, and with m = 1 the Hirzebruch numbers A091137. The general array is A368116. Using the terminology introduced in A368116 a(n) = lcm_{p in P_{2}(n)} Prod(p).

Examples

			Let n = 4. The partitions of 4 are [(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)]. Thus a(4) = lcm([6, 5*3, 4*4, 4*3*3, 3*3*3*3]) = 6480.
		

Crossrefs

Programs

  • SageMath
    def a(n): return lcm(product(r + 2 for r in p) for p in Partitions(n))
    print([a(n) for n in range(20)])

Formula

a(n) = A368092(n) * 2^(n - n mod 2).

A368116 A(m, n) = lcm_{p in Partitions(n)} (Product_{r in p}(r + m)). Array read by ascending antidiagonals, for m, n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 12, 6, 1, 4, 36, 24, 12, 1, 5, 80, 540, 720, 60, 1, 6, 150, 960, 6480, 1440, 360, 1, 7, 252, 5250, 134400, 136080, 60480, 2520, 1, 8, 392, 1512, 315000, 537600, 8164800, 120960, 5040, 1, 9, 576, 24696, 63504, 1575000, 32256000, 24494400, 3628800, 15120
Offset: 0

Views

Author

Peter Luschny, Dec 12 2023

Keywords

Comments

We say q is a 'm-shifted partition of n' if there is a partition p of n, p = (t1, t2, ..., tk) and q = (t1 + m, t2 + m, ..., tk + m), where m is a nonnegative integer. q is a partition of n + k*m.
Let P(n) denote the partitions of n and P_{m}(n) the m-shifted partitions of n. The product of a partition is the product of its parts, Prod(p) = p1*p2*...*pk if p = (p1, p2, ..., pk). Using this terminology, the definition can be written as A(m, n) = lcm_{p in P_{m}(n)} Prod(p).
With m = 0 the cumulative radical A048803 is computed, and with m = 1 the Hirzebruch numbers A091137.

Examples

			Array A(m, n) begins:
  [0] 1, 1,   2,     6,       12,        60,           360, ...  A048803
  [1] 1, 2,  12,    24,      720,      1440,         60480, ...  A091137
  [2] 1, 3,  36,   540,     6480,    136080,       8164800, ...  A368048
  [3] 1, 4,  80,   960,   134400,    537600,      32256000, ...
  [4] 1, 5, 150,  5250,   315000,   1575000,     330750000, ...
  [5] 1, 6, 252,  1512,    63504,   1905120,     880165440, ...
  [6] 1, 7, 392, 24696,  6914880, 532445760,  268352663040, ...
  [7] 1, 8, 576, 23040, 18247680, 145981440,  683193139200, ...
  [8] 1, 9, 810, 80190,  7217100, 844400700, 5851696851000, ...
.
Let m = 2 and n = 4. The partitions of 4 are [(4), (3,1), (2,2), (2,1,1), (1, 1, 1, 1)]. Thus A(2, 4) = lcm([6, 5*3, 4*4, 4*3*3, 3*3*3*3]) = 6480.
		

Crossrefs

Cf. A048803 (m=0), A091137 (m=1), A368048 (m=2).
Columns include: A000027, A011379.

Programs

  • SageMath
    def A(m, n): return lcm(product(r + m for r in p) for p in Partitions(n))
    for m in range(9): print([A(m, n) for n in range(7)])

A387140 a(n) = (1/n) * Product_{k=1..n} radical(k) for n >= 1, a(0) = 1, where radical(n) is the product of distinct prime factors of n, cf. A007947.

Original entry on oeis.org

1, 1, 1, 2, 3, 12, 60, 360, 630, 1680, 15120, 151200, 831600, 9979200, 129729600, 1816214400, 3405402000, 54486432000, 308756448000, 5557616064000, 52797352608000, 1055947052160000, 22174888095360000, 487847538097920000, 2805123344063040000, 13464592051502592000
Offset: 0

Views

Author

Peter Luschny, Aug 18 2025

Keywords

Crossrefs

Programs

  • Maple
    a := n -> if n = 0 then 1 else mul(NumberTheory:-Radical(i), i=1..n) / n fi:
  • Mathematica
    A387140[n_] := If[n == 0, 1, Quotient[Times @@ ResourceFunction["IntegerRadical"][Range[1, n]], n]]; Table[A387140[n], {n, 0, 25}]

Formula

a(n) = A048803(n) / n for n >= 1.

A246458 Catalan number analogs for A048804, the generalized binomial coefficients for the radical sequence (A007947).

Original entry on oeis.org

1, 1, 1, 5, 7, 7, 11, 143, 715, 2431, 4199, 29393, 52003, 37145, 7429, 215441, 392863, 4321493, 7960645, 58908773, 109402007, 407771117, 762354697, 3811773485, 35830670759, 19293438101, 327988447717, 2483341104143, 4709784852685, 17897182440203, 34062379482967
Offset: 0

Views

Author

Tom Edgar, Aug 26 2014

Keywords

Comments

One definition of the Catalan numbers is binomial(2*n,n) / (n+1); the current sequence models this definition using the generalized binomial coefficients arising from the radical sequence (A007947).

Examples

			A048804(10,5) = 42 and A007947(6) = 6, so a(5)=42/6=7.
		

Crossrefs

Programs

  • Sage
    [(1/(prod(x for x in prime_divisors(n+1))))*prod(prod(x for x in prime_divisors(i)) for i in [1..2*n])/prod(prod(x for x in prime_divisors(i)) for i in [1..n])^2 for n in [0..100]]

Formula

a(n) = A048804(2n,n) / A007947(n+1).
Showing 1-10 of 22 results. Next