A048804
Triangle: T(n,k)=b(n)/(b(k)*b(n-k)) where b is A048803.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 3, 2, 1, 1, 5, 5, 5, 5, 1, 1, 6, 15, 10, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 2, 7, 14, 35, 14, 7, 2, 1, 1, 3, 3, 7, 21, 21, 7, 3, 3, 1, 1, 10, 15, 10, 35, 42, 35, 10, 15, 10, 1, 1, 11, 55, 55, 55, 77, 77, 55, 55, 55, 11, 1, 1, 6, 33, 110, 165, 66
Offset: 0
1;
1,1;
1,2,1;
1,3,3,1;
1,2,3,2,1;
1,5,5,5,5,1;
where the last batch arises from 60/(1*60), 60/(1*12), 60/(2*6), 60/(6*2), 60/(12*1), 60/(60*1).
A352372
Triangle read by rows. Let R(n, k) = Y(n, k, B) where Y are the partial Bell polynomials and B is the list [Bernoulli(j, 1), j = 0..n]. T(n, k) are R(n, k) normalized by the lcm of the denominators of the terms in row n (A048803).
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 9, 6, 0, 0, 17, 36, 12, 0, -2, 50, 325, 300, 60, 0, 0, 28, 2475, 5250, 2700, 360, 0, 60, -882, 14161, 77175, 80850, 26460, 2520, 0, 0, -608, 5488, 239267, 499800, 311640, 70560, 5040, 0, -504, 6480, -57404, 735588, 3563721, 3969000, 1640520, 272160, 15120
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 2;
[3] 0, 1, 9, 6;
[4] 0, 0, 17, 36, 12;
[5] 0, -2, 50, 325, 300, 60;
[6] 0, 0, 28, 2475, 5250, 2700, 360;
[7] 0, 60, -882, 14161, 77175, 80850, 26460, 2520;
[8] 0, 0, -608, 5488, 239267, 499800, 311640, 70560, 5040;
.
For example row 7 is 2520*[R(7, k), k = 0..7] = 2520*[0, 1/42, -7/20, 2023/360, 245/8, 385/12, 21/2, 1] since lcm(1, 42, 20, 360, 8, 12, 2, 1) = A048803(7) = 2520. Conversely, since R(n, n) = 1 and T(n, n) = Product_{k=1..n} rad(k), the R(n, k) can be obtained by dividing the terms of row n by T(n, n).
-
B[n_, k_] := BellY[n, k, Table[BernoulliB[j, 1], {j, 0, n}]];
P[n_] := Select[Divisors[n], PrimeQ];
T[n_, k_] := B[n, k] Product[Product[p, {p, P[j]}], {j, 1, n}];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
A007947
Largest squarefree number dividing n: the squarefree kernel of n, rad(n), radical of n.
Original entry on oeis.org
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 2, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38, 77, 78
Offset: 1
G.f. = x + 2*x^2 + 3*x^3 + 2*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 2*x^8 + 3*x^9 + ... - _Michael Somos_, Jul 15 2018
- Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 10000 terms from T. D. Noe)
- Masum Billal, Divisible Sequence and its Characteristic Sequence, arXiv:1501.00609 [math.NT], 2015, theorem 11 page 5.
- Henry Bottomley, Some Smarandache-type multiplicative sequences
- Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
- Jarosław Grytczuk, Thue type problems for graphs, points and numbers, Discrete Math., 308 (2008), 4419-4429.
- Neville Holmes, Integer Sequences [Broken link]
- Serge Lang, Old and New Conjectured Diophantine Inequalities, Bull. Amer. Math. Soc., 23 (1990), 37-75. see p. 39.
- Wolfdieter Lang, Cantor's List of Real Algebraic Numbers of Heights 1 to 7, arXiv:2307.10645 [math.NT], 2023.
- D. H. Lehmer, Euler constants for arithmetical progressions, Collection of articles in memory of Juriĭ Vladimirovič Linnik. Acta Arith. 27 (1975), 125--142. MR0369233 (51 #5468). See N_k on page 131.
- Ivar Peterson, The Amazing ABC Conjecture
- Paul Tarau, Emulating Primality with Multiset Representations of Natural Numbers, in Theoretical Aspects of Computing, ICTAC 2011, Lecture Notes in Computer Science, 2011, Volume 6916/2011, 218-238
- Paul Tarau, Towards a generic view of primality through multiset decompositions of natural numbers, Theoretical Computer Science, Volume 537, 5 June 2014, Pages 105-124.
- Wikipedia, Radical of an integer.
More general factorization-related properties, specific to n:
A020639,
A028234,
A020500,
A010051,
A284318,
A000005,
A001221,
A005361,
A034444,
A014963,
A128651,
A267116.
A003961,
A059896 are used to express relationship between terms of this sequence.
-
a007947 = product . a027748_row -- Reinhard Zumkeller, Feb 27 2012
-
[ &*PrimeDivisors(n): n in [1..100] ]; // Klaus Brockhaus, Dec 04 2008
-
with(numtheory); A007947 := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := mul(t1[i][1],i=1..nops(t1)); end;
A007947 := n -> ilcm(op(numtheory[factorset](n))):
seq(A007947(i),i=1..69); # Peter Luschny, Mar 22 2011
A:= n -> convert(numtheory:-factorset(n),`*`):
seq(A(n),n=1..100); # Robert Israel, Aug 10 2014
seq(NumberTheory:-Radical(n), n = 1..78); # Peter Luschny, Jul 20 2021
-
rad[n_] := Times @@ (First@# & /@ FactorInteger@ n); Array[rad, 78] (* Robert G. Wilson v, Aug 29 2012 *)
Table[Last[Select[Divisors[n],SquareFreeQ]],{n,100}] (* Harvey P. Dale, Jul 14 2014 *)
a[ n_] := If[ n < 1, 0, Sum[ EulerPhi[d] Abs @ MoebiusMu[d], {d, Divisors[ n]}]]; (* Michael Somos, Jul 15 2018 *)
Table[Product[p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 20 2020 *)
-
a(n) = factorback(factorint(n)[,1]); \\ Andrew Lelechenko, May 09 2014
-
for(n=1, 100, print1(direuler(p=2, n, (1 + p*X - X)/(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
-
from sympy import primefactors, prod
def a(n): return 1 if n < 2 else prod(primefactors(n))
[a(n) for n in range(1, 51)] # Indranil Ghosh, Apr 16 2017
-
def A007947(n): return mul(p for p in prime_divisors(n))
[A007947(n) for n in (1..60)] # Peter Luschny, Mar 07 2017
-
(define (A007947 n) (if (= 1 n) n (* (A020639 n) (A007947 (A028234 n))))) ;; ;; Needs also code from A020639 and A028234. - Antti Karttunen, Jun 18 2017
A013939
Partial sums of sequence A001221 (number of distinct primes dividing n).
Original entry on oeis.org
0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 17, 19, 20, 21, 23, 24, 26, 28, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 45, 47, 49, 51, 53, 54, 56, 58, 60, 61, 64, 65, 67, 69, 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 93, 96, 97, 99, 101, 102, 104, 107, 108, 110, 112
Offset: 1
-
a013939 n = a013939_list !! (n-1)
a013939_list = scanl1 (+) $ map a001221 [1..]
-- Reinhard Zumkeller, Feb 16 2012
-
[(&+[Floor(n/NthPrime(k)): k in [1..n]]): n in [1..70]]; // G. C. Greubel, Nov 24 2018
-
A013939 := proc(n) option remember; `if`(n = 1, 0, a(n) + iquo(n+1, ithprime(n+1))) end:
seq(A013939(i), i = 1..69); # Peter Luschny, Jul 16 2011
-
a[n_] := Sum[Floor[n/Prime[k]], {k, 1, n}]; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, Jun 11 2012, from 2nd formula *)
Accumulate[PrimeNu[Range[120]]] (* Harvey P. Dale, Jun 05 2015 *)
-
t=0;vector(99,n,t+=omega(n)) \\ Charles R Greathouse IV, Jan 11 2012
-
a(n)=my(s);forprime(p=2,n,s+=n\p);s \\ Charles R Greathouse IV, Jan 11 2012
-
a(n) = sum(k=1, sqrtint(n), k * (primepi(n\k) - primepi(n\(k+1)))) + sum(k=1, n\(sqrtint(n)+1), if(isprime(k), n\k, 0)); \\ Daniel Suteu, Nov 24 2018
-
from sympy.ntheory import primefactors
print([sum(len(primefactors(k)) for k in range(1,n+1)) for n in range(1, 121)]) # Indranil Ghosh, Mar 19 2017
-
from sympy import primerange
def A013939(n): return sum(n//p for p in primerange(n+1)) # Chai Wah Wu, Oct 06 2024
-
[sum(floor(n/nth_prime(k)) for k in (1..n)) for n in (1..70)] # G. C. Greubel, Nov 24 2018
A060238
a(n) = det(M) where M is an n X n matrix with M[i,j] = lcm(i,j).
Original entry on oeis.org
1, 1, -2, 12, -48, 960, 11520, -483840, 3870720, -69672960, -2786918400, 306561024000, 7357464576000, -1147764473856000, -96412215803904000, -11569465896468480000, 185111454343495680000, -50350315581430824960000, -1812611360931509698560000
Offset: 0
MCKAY john (mckay(AT)cs.concordia.ca), Mar 21 2001
- J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 695, pp. 90, 297-298, Ellipses, Paris, 2004.
- J. Sandor and B. Crstici, Handbook of Number Theory II, Springer, 2004, p. 265, eq. 10.
-
A060238:=n->n!*mul((1-ithprime(i))^floor(n/ithprime(i)), i=1..numtheory[pi](n)): seq(A060238(n), n=0..20); # Wesley Ivan Hurt, Aug 15 2016
-
A060238[n_]:=n!*Product[(1 - Prime[i])^Floor[n/Prime[i]], {i, PrimePi[n]}]; Array[A060238, 20] (* Enrique Pérez Herrero, Jun 08 2010 *)
-
a(n)=n!*prod(p=1,sqrtint(n),if(isprime(p),(1-p)^floor(n/p),1)) \\ Benoit Cloitre, Jan 31 2008
A277174
a(n) = Product_{i=1..n} i*rad(i) where rad(n) = A007947(n).
Original entry on oeis.org
1, 1, 4, 36, 288, 7200, 259200, 12700800, 203212800, 5486745600, 548674560000, 66389621760000, 4780052766720000, 807828917575680000, 158334467844833280000, 35625255265087488000000, 1140008168482799616000000, 329462360691529089024000000
Offset: 0
-
A277174 := proc(n) local rad, i;
rad := n -> mul(k, k in numtheory:-factorset(n));
mul(i * rad(i), i=1..n) end:
seq(A277174(i), i=0..17);
-
Table[Product[i Last@ Select[Divisors@ i, SquareFreeQ], {i, n}], {n, 0, 17}] (* Michael De Vlieger, Oct 02 2016 *)
-
a(n) = prod(i=1, n, i*factorback(factorint(i)[, 1])); \\ Michel Marcus, Oct 03 2016
A368048
a(n) = lcm_{p in Partitions(n)} (Product_{t in p}(t + m)), where m = 2.
Original entry on oeis.org
1, 3, 36, 540, 6480, 136080, 8164800, 24494400, 293932800, 48498912000, 4073908608000, 158882435712000, 9532946142720000, 28598838428160000, 343186061137920000, 612587119131187200000, 7351045429574246400000, 419009589485732044800000, 276546329060583149568000000
Offset: 0
Let n = 4. The partitions of 4 are [(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)]. Thus a(4) = lcm([6, 5*3, 4*4, 4*3*3, 3*3*3*3]) = 6480.
A368116
A(m, n) = lcm_{p in Partitions(n)} (Product_{r in p}(r + m)). Array read by ascending antidiagonals, for m, n >= 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 12, 6, 1, 4, 36, 24, 12, 1, 5, 80, 540, 720, 60, 1, 6, 150, 960, 6480, 1440, 360, 1, 7, 252, 5250, 134400, 136080, 60480, 2520, 1, 8, 392, 1512, 315000, 537600, 8164800, 120960, 5040, 1, 9, 576, 24696, 63504, 1575000, 32256000, 24494400, 3628800, 15120
Offset: 0
Array A(m, n) begins:
[0] 1, 1, 2, 6, 12, 60, 360, ... A048803
[1] 1, 2, 12, 24, 720, 1440, 60480, ... A091137
[2] 1, 3, 36, 540, 6480, 136080, 8164800, ... A368048
[3] 1, 4, 80, 960, 134400, 537600, 32256000, ...
[4] 1, 5, 150, 5250, 315000, 1575000, 330750000, ...
[5] 1, 6, 252, 1512, 63504, 1905120, 880165440, ...
[6] 1, 7, 392, 24696, 6914880, 532445760, 268352663040, ...
[7] 1, 8, 576, 23040, 18247680, 145981440, 683193139200, ...
[8] 1, 9, 810, 80190, 7217100, 844400700, 5851696851000, ...
.
Let m = 2 and n = 4. The partitions of 4 are [(4), (3,1), (2,2), (2,1,1), (1, 1, 1, 1)]. Thus A(2, 4) = lcm([6, 5*3, 4*4, 4*3*3, 3*3*3*3]) = 6480.
A387140
a(n) = (1/n) * Product_{k=1..n} radical(k) for n >= 1, a(0) = 1, where radical(n) is the product of distinct prime factors of n, cf. A007947.
Original entry on oeis.org
1, 1, 1, 2, 3, 12, 60, 360, 630, 1680, 15120, 151200, 831600, 9979200, 129729600, 1816214400, 3405402000, 54486432000, 308756448000, 5557616064000, 52797352608000, 1055947052160000, 22174888095360000, 487847538097920000, 2805123344063040000, 13464592051502592000
Offset: 0
-
a := n -> if n = 0 then 1 else mul(NumberTheory:-Radical(i), i=1..n) / n fi:
-
A387140[n_] := If[n == 0, 1, Quotient[Times @@ ResourceFunction["IntegerRadical"][Range[1, n]], n]]; Table[A387140[n], {n, 0, 25}]
A246458
Catalan number analogs for A048804, the generalized binomial coefficients for the radical sequence (A007947).
Original entry on oeis.org
1, 1, 1, 5, 7, 7, 11, 143, 715, 2431, 4199, 29393, 52003, 37145, 7429, 215441, 392863, 4321493, 7960645, 58908773, 109402007, 407771117, 762354697, 3811773485, 35830670759, 19293438101, 327988447717, 2483341104143, 4709784852685, 17897182440203, 34062379482967
Offset: 0
A048804(10,5) = 42 and A007947(6) = 6, so a(5)=42/6=7.
Showing 1-10 of 22 results.
Comments