A001088
Product of totient function: a(n) = Product_{k=1..n} phi(k) (cf. A000010).
Original entry on oeis.org
1, 1, 1, 2, 4, 16, 32, 192, 768, 4608, 18432, 184320, 737280, 8847360, 53084160, 424673280, 3397386240, 54358179840, 326149079040, 5870683422720, 46965467381760, 563585608581120, 5635856085811200, 123988833887846400, 991910671102771200, 19838213422055424000
Offset: 0
a(2) = 1 because the matrix M is: [1,1; 1,2] and det(A) = 1.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 598.
- M. Petkovsek et al., A=B, Peters, 1996, p. 21.
- Antoine Mathys, Table of n, a(n) for n = 0..496 (first 100 terms by T. D. Noe)
- Antal Bege, Hadamard product of GCD matrices, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 43-49.
- E. C. Catalan, Théorème de MM. Smith et Mansion, Nouvelle correspondance mathématique, 4 (1878) 103-112. [_Philippe Deléham_, Dec 22 2003]
- Warren P. Johnson, An LDU Factorization in Elementary Number Theory, Mathematics Magazine, 76 (2003), 392-394.
- P. Mansion, On an Arithmetical Theorem of Professor Smith's, Messenger of Mathematics, (1878), pp. 81-82.
- Mathoverflow, Asymptotics of product of Euler's totient function, 2016.
- H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. London Math. Soc. 7 (1875-1876), pp. 208-212.
- Eric Weisstein's World of Mathematics, Le Paige's Theorem
- Index to divisibility sequences
-
List([1..30],n->Product([1..n],i->Phi(i))); # Muniru A Asiru, Jul 31 2018
-
a001088 n = a001088_list !! (n-1)
a001088_list = scanl1 (*) a000010_list
-- Reinhard Zumkeller, Mar 04 2012
-
with(numtheory,phi); A001088 := proc(n) local i; mul(phi(i),i=1..n); end;
seq(A001088(n), n=0..30);
-
A001088[n_]:=Times@@EulerPhi/@Range[n]; Table[A001088[n], {n, 30}] (* Enrique Pérez Herrero, Sep 19 2010 *)
Rest[FoldList[Times,1,EulerPhi[Range[30]]]] (* Harvey P. Dale, Dec 09 2011 *)
-
a(n)=prod(k=1,n,eulerphi(k)) \\ Charles R Greathouse IV, Mar 04 2012
A060841
Numerator of 1/det(M) where M is the n X n matrix with M[i,j] = 1/lcm(i,j).
Original entry on oeis.org
1, 4, 18, 144, 900, 16200, 132300, 2116800, 28576800, 714420000, 8644482000, 311201352000, 4382752374000, 143169910884000, 4026653743612500, 128852919795600000, 2327405863808025000, 125679916645633350000
Offset: 1
Noam Katz (noamkj(AT)hotmail.com), May 02 2001
a(2) = 4 because the matrix M is [1,1/2; 1/2,1/2] and det(M) = 1/4.
-
d[n_] := Denominator[ Det[ Table[ GCD[1/i, 1/j], {i, n}, {j, n}]]; Array[d, 18]] (* Robert G. Wilson v, Aug 02 2015 *)
-
vector(20, n, numerator(1/matdet(matrix(n, n, i, j, 1/lcm(i,j))))) \\ Michel Marcus, Aug 03 2015
A060239
a(n) = determinant(P*Q)/n! where P, Q are n X n matrices with P[i,j]=lcm(i,j), Q[i,j]=gcd(i,j).
Original entry on oeis.org
1, -1, 4, -8, 128, 512, -18432, 73728, -884736, -14155776, 1415577600, 11324620800, -1630745395200, -58706834227200, -3757237390540800, 30057899124326400, -7694822175827558400, -92337866109930700800
Offset: 1
MCKAY john (mckay(AT)cs.concordia.ca), Mar 21 2001
-
def A060239(n):
P = Matrix(lambda i,j: lcm(i+1,j+1), nrows=n)
Q = Matrix(lambda i,j: gcd(i+1,j+1), nrows=n)
return (P*Q).det()/factorial(n) # D. S. McNeil, Jan 16 2011
A085905
Permanent of the symmetric n X n matrix M defined by M(i,j) = lcm(i,j) for 1 <= i,j <= n.
Original entry on oeis.org
1, 6, 144, 5952, 772560, 73664640, 29745273600, 8715934402560, 5068085799813120, 2756328707949465600, 4581860819083475558400, 2696083278990328597708800, 7844679216026128507826995200
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 16 2003
a(2)=6 since the 2 by 2 matrix A with rows [1,2],[2,2] has permanent 1*2+2*2=6.
-
with(linalg): a:=(i,j)->lcm(i,j): seq(permanent(matrix(n,n,a)),n=1..14); # Emeric Deutsch, Feb 08 2005
-
a[n_] := Permanent[Table[LCM[i, j], {i, 1, n}, {j, 1, n}]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 14}] (* Jean-François Alcover, Jan 07 2016 *)
-
a(n)=matpermanent(matrix(n,n,r,c,lcm(r,c)));
vector(23,n,a(n)) \\ Joerg Arndt, Aug 15 2019
A360067
a(n) = det(M) where M is an n X n matrix with M[i,j] = i^j*(i-j).
Original entry on oeis.org
1, 0, 2, 12, 2304, 898560, 4827340800, 143219736576000, 49230909076930560000, 149334225705682285363200000, 5482643392499167214520238080000000, 2322479608280149573505226859610112000000000, 13283541711093841017468807905468592685056000000000000
Offset: 0
-
a:= n-> LinearAlgebra[Determinant](Matrix(n, (i,j) -> i^j*(i-j))):
seq(a(n), n=0..12); # Alois P. Heinz, Jan 25 2023
-
a[n_] := Det@Table[i^j (i - j), {i, n}, {j, n}]; Table[a[n], {n, 1, 15}]
-
a(n) = matdet(matrix(n, n, i, j, i^j*(i-j))); \\ Michel Marcus, Jan 24 2023
-
from sympy import Matrix
def A360067(n): return Matrix(n,n,[i**j*(i-j) for i in range(1,n+1) for j in range(1,n+1)]).det() # Chai Wah Wu, Jan 27 2023
A140412
Determinants of the n X n matrices whose (i,j)-elements are lcm(i^2, j^2).
Original entry on oeis.org
1, -12, 864, -41472, 24883200, 21499084800, -50565847449600, 9708642710323200, -6291200476289433600, -45296643429283921920000, 657707262593202546278400000, 2273036299522107999938150400000, -64536046616031690334243966156800000
Offset: 1
-
a(n) = matdet(matrix(n, n, i, j, lcm(i^2, j^2))); \\ Michel Marcus, Jul 10 2014
Showing 1-6 of 6 results.
Comments