cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001088 Product of totient function: a(n) = Product_{k=1..n} phi(k) (cf. A000010).

Original entry on oeis.org

1, 1, 1, 2, 4, 16, 32, 192, 768, 4608, 18432, 184320, 737280, 8847360, 53084160, 424673280, 3397386240, 54358179840, 326149079040, 5870683422720, 46965467381760, 563585608581120, 5635856085811200, 123988833887846400, 991910671102771200, 19838213422055424000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j) for 1 <= i,j <= n [Smith and Mansion]. - Avi Peretz (njk(AT)netvision.net.il), Mar 20 2001
The matrix M(i,j) = gcd(i,j) is sequence A003989. - Michael Somos, Jun 25 2012

Examples

			a(2) = 1 because the matrix M is: [1,1; 1,2] and det(A) = 1.
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 598.
  • M. Petkovsek et al., A=B, Peters, 1996, p. 21.

Crossrefs

Programs

Formula

a(n) = phi(1) * phi(2) * ... * phi(n).
Limit_{n->infinity} a(n)^(1/n) / n = exp(-1) * A124175 = 0.205963050288186353879675428232497466485878059342058515016427881513657493... (see Mathoverflow link). - Vaclav Kotesovec, Jun 09 2021

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 19 2023

A060841 Numerator of 1/det(M) where M is the n X n matrix with M[i,j] = 1/lcm(i,j).

Original entry on oeis.org

1, 4, 18, 144, 900, 16200, 132300, 2116800, 28576800, 714420000, 8644482000, 311201352000, 4382752374000, 143169910884000, 4026653743612500, 128852919795600000, 2327405863808025000, 125679916645633350000
Offset: 1

Views

Author

Noam Katz (noamkj(AT)hotmail.com), May 02 2001

Keywords

Comments

The value of 1/det(M) is not always an integer! For example, 1/det(35) = 5029296746186844716050163189085401314000634765625/2. - Harry J. Smith, Jul 13 2009
Conjecture: 1/det(M) is an integer only for n: 1 - 34, 36 and 38. All denominators are powers of two (A000079). But not all powers of two are present. See A260502. - Robert G. Wilson v, Aug 02 2015
Values of n at which a(n) = a(n+1): 63, 127, 255, ..., . - Robert G. Wilson v, Aug 03 2015

Examples

			a(2) = 4 because the matrix M is [1,1/2; 1/2,1/2] and det(M) = 1/4.
		

Crossrefs

Programs

  • Mathematica
    d[n_] := Denominator[ Det[ Table[ GCD[1/i, 1/j], {i, n}, {j, n}]]; Array[d, 18]] (* Robert G. Wilson v, Aug 02 2015 *)
  • PARI
    vector(20, n, numerator(1/matdet(matrix(n, n, i, j, 1/lcm(i,j))))) \\ Michel Marcus, Aug 03 2015

Formula

a(n) = (n!)^2 / (phi(1)*phi(2)*...*phi(n)) = (n!)^2 / A001088(n).

Extensions

More terms from Reiner Martin, May 17 2001

A060239 a(n) = determinant(P*Q)/n! where P, Q are n X n matrices with P[i,j]=lcm(i,j), Q[i,j]=gcd(i,j).

Original entry on oeis.org

1, -1, 4, -8, 128, 512, -18432, 73728, -884736, -14155776, 1415577600, 11324620800, -1630745395200, -58706834227200, -3757237390540800, 30057899124326400, -7694822175827558400, -92337866109930700800
Offset: 1

Views

Author

MCKAY john (mckay(AT)cs.concordia.ca), Mar 21 2001

Keywords

Crossrefs

Programs

  • Sage
    def A060239(n):
        P = Matrix(lambda i,j: lcm(i+1,j+1), nrows=n)
        Q = Matrix(lambda i,j: gcd(i+1,j+1), nrows=n)
        return (P*Q).det()/factorial(n) # D. S. McNeil, Jan 16 2011

Formula

a(n) = A001088(n)*A060238(n)/n!.

A085905 Permanent of the symmetric n X n matrix M defined by M(i,j) = lcm(i,j) for 1 <= i,j <= n.

Original entry on oeis.org

1, 6, 144, 5952, 772560, 73664640, 29745273600, 8715934402560, 5068085799813120, 2756328707949465600, 4581860819083475558400, 2696083278990328597708800, 7844679216026128507826995200
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 16 2003

Keywords

Examples

			a(2)=6 since the 2 by 2 matrix A with rows [1,2],[2,2] has permanent 1*2+2*2=6.
		

Crossrefs

Programs

  • Maple
    with(linalg): a:=(i,j)->lcm(i,j): seq(permanent(matrix(n,n,a)),n=1..14); # Emeric Deutsch, Feb 08 2005
  • Mathematica
    a[n_] := Permanent[Table[LCM[i, j], {i, 1, n}, {j, 1, n}]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 14}] (* Jean-François Alcover, Jan 07 2016 *)
  • PARI
    a(n)=matpermanent(matrix(n,n,r,c,lcm(r,c)));
    vector(23,n,a(n)) \\ Joerg Arndt, Aug 15 2019

Extensions

More terms from Emeric Deutsch, Feb 08 2005

A360067 a(n) = det(M) where M is an n X n matrix with M[i,j] = i^j*(i-j).

Original entry on oeis.org

1, 0, 2, 12, 2304, 898560, 4827340800, 143219736576000, 49230909076930560000, 149334225705682285363200000, 5482643392499167214520238080000000, 2322479608280149573505226859610112000000000, 13283541711093841017468807905468592685056000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> LinearAlgebra[Determinant](Matrix(n, (i,j) -> i^j*(i-j))):
    seq(a(n), n=0..12);  # Alois P. Heinz, Jan 25 2023
  • Mathematica
    a[n_] := Det@Table[i^j (i - j), {i, n}, {j, n}]; Table[a[n], {n, 1, 15}]
  • PARI
    a(n) = matdet(matrix(n, n, i, j, i^j*(i-j))); \\ Michel Marcus, Jan 24 2023
    
  • Python
    from sympy import Matrix
    def A360067(n): return Matrix(n,n,[i**j*(i-j) for i in range(1,n+1) for j in range(1,n+1)]).det() # Chai Wah Wu, Jan 27 2023

Formula

For n>=1, a(n) = A000178(n-1) * A089064(n). - Vaclav Kotesovec, Apr 19 2024

A140412 Determinants of the n X n matrices whose (i,j)-elements are lcm(i^2, j^2).

Original entry on oeis.org

1, -12, 864, -41472, 24883200, 21499084800, -50565847449600, 9708642710323200, -6291200476289433600, -45296643429283921920000, 657707262593202546278400000, 2273036299522107999938150400000, -64536046616031690334243966156800000
Offset: 1

Views

Author

John W. Layman, Jun 17 2008

Keywords

Comments

The determinants of the n X n matrices whose (i,j)-elements are lcm(i,j) are given in A060238.

Crossrefs

Cf. A060238.

Programs

  • PARI
    a(n) = matdet(matrix(n, n, i, j, lcm(i^2, j^2))); \\ Michel Marcus, Jul 10 2014

Formula

It appears that a(n) = Product_{k=1..n} MT2(k) * rad(k)^2 * mu(rad(k)), where MT2(k) is the k-th term of the Moebius transform of the sequence of squares, rad(k) is the squarefree kernel of k and mu denotes the Moebius function.
Showing 1-6 of 6 results.