cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A260897 Numerator of det(M) where M is the n X n matrix with M[i,j] = 1/lcm(i,j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 8, 2, 16, 16, 32, 8, 64, 32, 64, 4, 8, 8, 256, 128, 512, 256, 2048, 256, 1024, 1024, 2048, 2048, 8192, 4096, 16384, 128, 2048, 2048, 4096, 8192, 32768, 65536, 131072, 16384, 131072
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2015

Keywords

Comments

All terms are powers of two (A000079).

Crossrefs

Programs

  • Maple
    seq(denom(1/LinearAlgebra:-Determinant(Matrix(n,n,1/ilcm))),n=1..100); # Robert Israel, Aug 17 2015
  • Mathematica
    f[n_] := Denominator[1 / Det[ Table[ 1/LCM[i, j], {i, n}, {j, n}]]]; Array[f, 73]
  • PARI
    vector(80, n, denominator(1/matdet(matrix(n, n, i, j, 1/lcm(i, j))))) \\ Michel Marcus, Aug 04 2015

Formula

a(n) = 2^A260502(n).

A260502 Log_2 of the numerator of det(M) where M is the n X n matrix with M[i,j] = 1/lcm(i,j).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 1, 4, 4, 5, 3, 6, 5, 6, 2, 3, 3, 8, 7, 9, 8, 11, 8, 10, 10, 11, 11, 13, 12, 14, 7, 11, 11, 12, 13, 15, 16, 17, 14, 17, 17, 20, 18, 20, 21, 22, 19, 20, 21, 22, 21, 27, 26, 29, 26, 29
Offset: 1

Views

Author

Robert G. Wilson v, Aug 02 2015

Keywords

Comments

Powers of two not present in A260897: 23, 24, 25, 28, 38, 46, 47, 49, 55, 63, 64, 69, ..., .

Examples

			a(4) = 0 because for n=4 det(M) = 1/144.
a(35) = 1 because for n=35 det(M) equals 2/5029296746186844716050163189085401314000634765625.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Log2@ Numerator@ Det@ Table[ 1/LCM[i, j], {i, n}, {j, n}]; Array[f, 85]
  • PARI
    vector(80, n, valuation(denominator(1/matdet(matrix(n, n, i, j, 1/lcm(i, j)))), 2)) \\ Michel Marcus, Aug 04 2015

Formula

a(n) = A007814(A260897(n)).

A260908 Numerator of 1/det(M) where M is the n X n matrix with M[i,j] = 1/gcd(i,j).

Original entry on oeis.org

1, -2, 3, -12, 15, 45, -105, 420, -1890, -4725, 10395, 31185, -135135, -315315, -4729725, 4729725, -80405325, -723647925, 1527701175, 7638505875, 53469541125, 117632990475, -245959889175, -737879667525, 18446991688125, 79936963981875, -2158298027510625
Offset: 1

Views

Author

Robert G. Wilson v, Aug 04 2015

Keywords

Comments

Negative terms for n: 2, 4, 7, 9, 10, 13, 14, 15, 17, 18, 23, 24, 27, 28, 30, ..., .

Crossrefs

Programs

  • Mathematica
    f[n_] := 1/Det[ Table[ 1/GCD[i, j], {i, n}, {j, n}]]; Numerator@ Array[f, 27]
  • PARI
    vector(40, n, numerator(1/matdet(matrix(n, n, i, j, 1/gcd(i, j))))) \\ Michel Marcus, Aug 06 2015
Showing 1-3 of 3 results.