cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060841 Numerator of 1/det(M) where M is the n X n matrix with M[i,j] = 1/lcm(i,j).

Original entry on oeis.org

1, 4, 18, 144, 900, 16200, 132300, 2116800, 28576800, 714420000, 8644482000, 311201352000, 4382752374000, 143169910884000, 4026653743612500, 128852919795600000, 2327405863808025000, 125679916645633350000
Offset: 1

Views

Author

Noam Katz (noamkj(AT)hotmail.com), May 02 2001

Keywords

Comments

The value of 1/det(M) is not always an integer! For example, 1/det(35) = 5029296746186844716050163189085401314000634765625/2. - Harry J. Smith, Jul 13 2009
Conjecture: 1/det(M) is an integer only for n: 1 - 34, 36 and 38. All denominators are powers of two (A000079). But not all powers of two are present. See A260502. - Robert G. Wilson v, Aug 02 2015
Values of n at which a(n) = a(n+1): 63, 127, 255, ..., . - Robert G. Wilson v, Aug 03 2015

Examples

			a(2) = 4 because the matrix M is [1,1/2; 1/2,1/2] and det(M) = 1/4.
		

Crossrefs

Programs

  • Mathematica
    d[n_] := Denominator[ Det[ Table[ GCD[1/i, 1/j], {i, n}, {j, n}]]; Array[d, 18]] (* Robert G. Wilson v, Aug 02 2015 *)
  • PARI
    vector(20, n, numerator(1/matdet(matrix(n, n, i, j, 1/lcm(i,j))))) \\ Michel Marcus, Aug 03 2015

Formula

a(n) = (n!)^2 / (phi(1)*phi(2)*...*phi(n)) = (n!)^2 / A001088(n).

Extensions

More terms from Reiner Martin, May 17 2001

A260502 Log_2 of the numerator of det(M) where M is the n X n matrix with M[i,j] = 1/lcm(i,j).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 1, 4, 4, 5, 3, 6, 5, 6, 2, 3, 3, 8, 7, 9, 8, 11, 8, 10, 10, 11, 11, 13, 12, 14, 7, 11, 11, 12, 13, 15, 16, 17, 14, 17, 17, 20, 18, 20, 21, 22, 19, 20, 21, 22, 21, 27, 26, 29, 26, 29
Offset: 1

Views

Author

Robert G. Wilson v, Aug 02 2015

Keywords

Comments

Powers of two not present in A260897: 23, 24, 25, 28, 38, 46, 47, 49, 55, 63, 64, 69, ..., .

Examples

			a(4) = 0 because for n=4 det(M) = 1/144.
a(35) = 1 because for n=35 det(M) equals 2/5029296746186844716050163189085401314000634765625.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Log2@ Numerator@ Det@ Table[ 1/LCM[i, j], {i, n}, {j, n}]; Array[f, 85]
  • PARI
    vector(80, n, valuation(denominator(1/matdet(matrix(n, n, i, j, 1/lcm(i, j)))), 2)) \\ Michel Marcus, Aug 04 2015

Formula

a(n) = A007814(A260897(n)).

A260909 Denominator of 1/det(M) where M is the n X n matrix with M[i,j] = 1/gcd(i,j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 4, 4, 32, 2, 32, 32, 64, 64, 256, 256, 512, 128, 512, 1024, 2048, 1024, 4096, 16384, 32768, 1024, 4096, 32768, 262144, 131072, 524288, 524288, 4194304, 2097152, 16777216, 33554432, 67108864, 33554432, 268435456, 268435456
Offset: 1

Views

Author

Robert G. Wilson v, Aug 04 2015

Keywords

Comments

All terms are powers of two (A000079).

Crossrefs

Programs

  • Maple
    seq(denom(1/LinearAlgebra:-Determinant(Matrix(n,n,1/igcd))),n=1..100); # Robert Israel, Aug 16 2015
  • Mathematica
    f[n_] := 1/Det[ Table[ 1/GCD[i, j], {i, n}, {j, n}]]; Denominator@ Array[f, 46]
  • PARI
    vector(50, n, denominator(1/matdet(matrix(n, n, i, j, 1/gcd(i, j))))) \\ Michel Marcus, Aug 07 2015
Showing 1-3 of 3 results.