cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A060841 Numerator of 1/det(M) where M is the n X n matrix with M[i,j] = 1/lcm(i,j).

Original entry on oeis.org

1, 4, 18, 144, 900, 16200, 132300, 2116800, 28576800, 714420000, 8644482000, 311201352000, 4382752374000, 143169910884000, 4026653743612500, 128852919795600000, 2327405863808025000, 125679916645633350000
Offset: 1

Views

Author

Noam Katz (noamkj(AT)hotmail.com), May 02 2001

Keywords

Comments

The value of 1/det(M) is not always an integer! For example, 1/det(35) = 5029296746186844716050163189085401314000634765625/2. - Harry J. Smith, Jul 13 2009
Conjecture: 1/det(M) is an integer only for n: 1 - 34, 36 and 38. All denominators are powers of two (A000079). But not all powers of two are present. See A260502. - Robert G. Wilson v, Aug 02 2015
Values of n at which a(n) = a(n+1): 63, 127, 255, ..., . - Robert G. Wilson v, Aug 03 2015

Examples

			a(2) = 4 because the matrix M is [1,1/2; 1/2,1/2] and det(M) = 1/4.
		

Crossrefs

Programs

  • Mathematica
    d[n_] := Denominator[ Det[ Table[ GCD[1/i, 1/j], {i, n}, {j, n}]]; Array[d, 18]] (* Robert G. Wilson v, Aug 02 2015 *)
  • PARI
    vector(20, n, numerator(1/matdet(matrix(n, n, i, j, 1/lcm(i,j))))) \\ Michel Marcus, Aug 03 2015

Formula

a(n) = (n!)^2 / (phi(1)*phi(2)*...*phi(n)) = (n!)^2 / A001088(n).

Extensions

More terms from Reiner Martin, May 17 2001

A260897 Numerator of det(M) where M is the n X n matrix with M[i,j] = 1/lcm(i,j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 8, 2, 16, 16, 32, 8, 64, 32, 64, 4, 8, 8, 256, 128, 512, 256, 2048, 256, 1024, 1024, 2048, 2048, 8192, 4096, 16384, 128, 2048, 2048, 4096, 8192, 32768, 65536, 131072, 16384, 131072
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2015

Keywords

Comments

All terms are powers of two (A000079).

Crossrefs

Programs

  • Maple
    seq(denom(1/LinearAlgebra:-Determinant(Matrix(n,n,1/ilcm))),n=1..100); # Robert Israel, Aug 17 2015
  • Mathematica
    f[n_] := Denominator[1 / Det[ Table[ 1/LCM[i, j], {i, n}, {j, n}]]]; Array[f, 73]
  • PARI
    vector(80, n, denominator(1/matdet(matrix(n, n, i, j, 1/lcm(i, j))))) \\ Michel Marcus, Aug 04 2015

Formula

a(n) = 2^A260502(n).
Showing 1-2 of 2 results.