cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A091137 The Hirzebruch numbers. a(n) = Product_{2 <= p <= n+1, p prime} p^floor(n / (p - 1)).

Original entry on oeis.org

1, 2, 12, 24, 720, 1440, 60480, 120960, 3628800, 7257600, 479001600, 958003200, 2615348736000, 5230697472000, 31384184832000, 62768369664000, 32011868528640000, 64023737057280000, 51090942171709440000, 102181884343418880000, 33720021833328230400000, 67440043666656460800000
Offset: 0

Views

Author

Henry Bottomley, Dec 19 2003

Keywords

Comments

Largest number m such that number of times m divides k! is almost k/n for large k, i.e., largest m with A090624(m) = n.
This is always a relatively small multiple of n!, since the multiplicity with which a prime p divides n! is always <= n/(p-1); it is equal to floor(n/(p-1)) at least when n is a power of p. - Franklin T. Adams-Watters, May 31 2010
At least for most small n, a(n) = A002790(n) * n!; the first difference is n=15. It appears that A002790(n) * n! always divides a(n).
Conjecture: The denominators of the series reversion of the sequence with e.g.f. Polylog(2,x). - Benedict W. J. Irwin, Jan 05 2017
Not only is a(n) divisible by n!; a(n) is divisible by (n + 1)! as has been observed by Bedhouche and Bakir (see links and A363596). - Hal M. Switkay, Aug 15 2025

Examples

			Let n = 4. The partitions of 4 are [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]. Thus a(4) = lcm([5, 4*2, 3*3, 3*2*2, 2*2*2*2]) = 720.
		

References

  • P. Curtz, Integration numérique ..., Note 12, C.C.S.A., Arcueil, 1969; see pp. 36, 56.
  • F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, 3rd. ed., 1966; Lemma 1.7.3, p. 14. [From N. J. A. Sloane, Sep 06 2010]

Crossrefs

Starts similarly to A002207 especially for even n and all values of A002207 seen so far seem to divide a(n).

Programs

  • Maple
    A091137 := proc(n) local a,i,p ; a := 1 ; for i from 1 do p := ithprime(i) ; if p > n+1 then break; fi; a := a*p^floor(n/(p-1)) ; od: a ; end:
    seq(A091137(n), n = 0..47); # R. J. Mathar, Feb 23 2009
  • Mathematica
    A027760[n_] := Product[d, {d, Select[ Divisors[n] + 1, PrimeQ]}]; a[n_] := a[n] = A027760[n]*a[n-1]; a[0] = 1; Table[ a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 04 2011 *)
  • PARI
    a(n) = local(r); r=1; forprime(p=2, n+1, r*=p^(n\(p-1))); r
    \\ Franklin T. Adams-Watters, May 31 2010
    
  • Python
    from math import prod
    from sympy import primerange
    def A091137(n): return prod(p**(n//(p-1)) for p in primerange(n+2))
    # Chai Wah Wu, Apr 28 2023
    
  • SageMath
    def a(n): return lcm(product(r + 1 for r in p) for p in Partitions(n))
    # Or, more efficient:
    from functools import cache
    @cache
    def a_rec(n):
        if n == 0: return 1
        p = mul(s for s in map(lambda i: i + 1, divisors(n)) if is_prime(s))
        return p * a_rec(n - 1)
    print([a_rec(n) for n in range(22)]) # Peter Luschny, Dec 12 2023

Formula

a(n) = Product_p {p prime} p^floor(n/(p-1)).
a(2n+1) = 2*a(2n).
a(n+1) = A027760(n+1)*a(n). - Paul Curtz, Aug 01 2008
From Peter Luschny, Dec 11 2023: (Start)
a(n) = lcm_{p in P(n)} Product_{r in p}(r + 1), where P(n) are the partitions of n.
a(n) = lcm(A238963row(n)).
a(n) = A368116(1, n), seen as the lcm of the product of the 1-shifted partitions.
a(n) = A368093(1, n), seen as the cumulative product of the Clausen numbers A160014(1, n). (End)
a(n) = lcm({k: A275314(k) = n+1}). - Hal M. Switkay, Aug 13 2025
a(n) = (n + 1)! * A363596(n). - Hal M. Switkay, Aug 15 2025

Extensions

New name using a formula of the author by Peter Luschny, Dec 11 2023

A368048 a(n) = lcm_{p in Partitions(n)} (Product_{t in p}(t + m)), where m = 2.

Original entry on oeis.org

1, 3, 36, 540, 6480, 136080, 8164800, 24494400, 293932800, 48498912000, 4073908608000, 158882435712000, 9532946142720000, 28598838428160000, 343186061137920000, 612587119131187200000, 7351045429574246400000, 419009589485732044800000, 276546329060583149568000000
Offset: 0

Views

Author

Peter Luschny, Dec 12 2023

Keywords

Comments

With m = 0, the cumulative radical A048803 is computed, and with m = 1 the Hirzebruch numbers A091137. The general array is A368116. Using the terminology introduced in A368116 a(n) = lcm_{p in P_{2}(n)} Prod(p).

Examples

			Let n = 4. The partitions of 4 are [(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)]. Thus a(4) = lcm([6, 5*3, 4*4, 4*3*3, 3*3*3*3]) = 6480.
		

Crossrefs

Programs

  • SageMath
    def a(n): return lcm(product(r + 2 for r in p) for p in Partitions(n))
    print([a(n) for n in range(20)])

Formula

a(n) = A368092(n) * 2^(n - n mod 2).

A368093 Cumulative products of the generalized Clausen numbers. Array read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 12, 6, 1, 1, 9, 24, 12, 1, 5, 5, 135, 720, 60, 1, 1, 25, 5, 405, 1440, 360, 1, 7, 7, 875, 175, 8505, 60480, 2520, 1, 1, 49, 7, 4375, 175, 127575, 120960, 5040, 1, 1, 1, 343, 49, 21875, 875, 382725, 3628800, 15120
Offset: 0

Views

Author

Peter Luschny, Dec 12 2023

Keywords

Comments

A160014 are the generalized Clausen numbers, for m = 0 the formula computes the cumulative radical A048803, and for m = 1 the Hirzebruch numbers A091137.

Examples

			Array A(m, n) starts:
  [0] 1, 1,  2,   6,   12,     60,     360,      2520, ...  A048803
  [1] 1, 2, 12,  24,  720,   1440,   60480,    120960, ...  A091137
  [2] 1, 3,  9, 135,  405,   8505,  127575,    382725, ...  A368092
  [3] 1, 1,  5,   5,  175,    175,     875,       875, ...
  [4] 1, 5, 25, 875, 4375,  21875,  765625,  42109375, ...
  [5] 1, 1,  7,   7,   49,     49,    3773,      3773, ...
  [6] 1, 7, 49, 343, 2401, 184877, 1294139, 117766649, ...
  [7] 1, 1,  1,   1,   11,     11,     143,       143, ...
  [8] 1, 1,  1,  11,   11,    143,    1573,      1573, ...
  [9] 1, 1, 11,  11, 1573,   1573,   17303,     17303, ...
		

Crossrefs

Cf. A160014, A048803 (m=0), A091137 (m=1), A368092 (m=2).

Programs

  • SageMath
    from functools import cache
    def Clausen(n, k):
        return mul(s for s in map(lambda i: i+n, divisors(k)) if is_prime(s))
    @cache
    def CumProdClausen(m, n):
        return Clausen(m, n) * CumProdClausen(m, n - 1) if n > 0 else 1
    for m in range(10): print([m], [CumProdClausen(m, n) for n in range(8)])

Formula

A(m, n) = A160014(m, n) * A(m, n - 1) for n > 0 and A(m, 0) = 1.
Showing 1-3 of 3 results.