A368116
A(m, n) = lcm_{p in Partitions(n)} (Product_{r in p}(r + m)). Array read by ascending antidiagonals, for m, n >= 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 12, 6, 1, 4, 36, 24, 12, 1, 5, 80, 540, 720, 60, 1, 6, 150, 960, 6480, 1440, 360, 1, 7, 252, 5250, 134400, 136080, 60480, 2520, 1, 8, 392, 1512, 315000, 537600, 8164800, 120960, 5040, 1, 9, 576, 24696, 63504, 1575000, 32256000, 24494400, 3628800, 15120
Offset: 0
Array A(m, n) begins:
[0] 1, 1, 2, 6, 12, 60, 360, ... A048803
[1] 1, 2, 12, 24, 720, 1440, 60480, ... A091137
[2] 1, 3, 36, 540, 6480, 136080, 8164800, ... A368048
[3] 1, 4, 80, 960, 134400, 537600, 32256000, ...
[4] 1, 5, 150, 5250, 315000, 1575000, 330750000, ...
[5] 1, 6, 252, 1512, 63504, 1905120, 880165440, ...
[6] 1, 7, 392, 24696, 6914880, 532445760, 268352663040, ...
[7] 1, 8, 576, 23040, 18247680, 145981440, 683193139200, ...
[8] 1, 9, 810, 80190, 7217100, 844400700, 5851696851000, ...
.
Let m = 2 and n = 4. The partitions of 4 are [(4), (3,1), (2,2), (2,1,1), (1, 1, 1, 1)]. Thus A(2, 4) = lcm([6, 5*3, 4*4, 4*3*3, 3*3*3*3]) = 6480.
A368092
a(n) = A160014(m, n) * a(n - 1) for m = 2 and n > 0, a(0) = 1.
Original entry on oeis.org
1, 3, 9, 135, 405, 8505, 127575, 382725, 1148175, 189448875, 3978426375, 155158628625, 2327379429375, 6982138288125, 20946414864375, 37389350532909375, 112168051598728125, 6393578941127503125, 1054940525286038015625, 3164821575858114046875, 66461253093020394984375
Offset: 0
-
from functools import cache
@cache
def a_rec(n):
if n == 0: return 1
p = mul(s for s in map(lambda i: i + 2, divisors(n)) if is_prime(s))
return p * a_rec(n - 1)
print([a_rec(n) for n in range(21)])
# Alternatively, but less efficient:
def a(n): return (2**(n%2 - n) * lcm(product(r + 2 for r in p) for p in Partitions(n)))
A368093
Cumulative products of the generalized Clausen numbers. Array read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 12, 6, 1, 1, 9, 24, 12, 1, 5, 5, 135, 720, 60, 1, 1, 25, 5, 405, 1440, 360, 1, 7, 7, 875, 175, 8505, 60480, 2520, 1, 1, 49, 7, 4375, 175, 127575, 120960, 5040, 1, 1, 1, 343, 49, 21875, 875, 382725, 3628800, 15120
Offset: 0
Array A(m, n) starts:
[0] 1, 1, 2, 6, 12, 60, 360, 2520, ... A048803
[1] 1, 2, 12, 24, 720, 1440, 60480, 120960, ... A091137
[2] 1, 3, 9, 135, 405, 8505, 127575, 382725, ... A368092
[3] 1, 1, 5, 5, 175, 175, 875, 875, ...
[4] 1, 5, 25, 875, 4375, 21875, 765625, 42109375, ...
[5] 1, 1, 7, 7, 49, 49, 3773, 3773, ...
[6] 1, 7, 49, 343, 2401, 184877, 1294139, 117766649, ...
[7] 1, 1, 1, 1, 11, 11, 143, 143, ...
[8] 1, 1, 1, 11, 11, 143, 1573, 1573, ...
[9] 1, 1, 11, 11, 1573, 1573, 17303, 17303, ...
-
from functools import cache
def Clausen(n, k):
return mul(s for s in map(lambda i: i+n, divisors(k)) if is_prime(s))
@cache
def CumProdClausen(m, n):
return Clausen(m, n) * CumProdClausen(m, n - 1) if n > 0 else 1
for m in range(10): print([m], [CumProdClausen(m, n) for n in range(8)])
Showing 1-3 of 3 results.
Comments