A368048
a(n) = lcm_{p in Partitions(n)} (Product_{t in p}(t + m)), where m = 2.
Original entry on oeis.org
1, 3, 36, 540, 6480, 136080, 8164800, 24494400, 293932800, 48498912000, 4073908608000, 158882435712000, 9532946142720000, 28598838428160000, 343186061137920000, 612587119131187200000, 7351045429574246400000, 419009589485732044800000, 276546329060583149568000000
Offset: 0
Let n = 4. The partitions of 4 are [(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)]. Thus a(4) = lcm([6, 5*3, 4*4, 4*3*3, 3*3*3*3]) = 6480.
A368093
Cumulative products of the generalized Clausen numbers. Array read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 12, 6, 1, 1, 9, 24, 12, 1, 5, 5, 135, 720, 60, 1, 1, 25, 5, 405, 1440, 360, 1, 7, 7, 875, 175, 8505, 60480, 2520, 1, 1, 49, 7, 4375, 175, 127575, 120960, 5040, 1, 1, 1, 343, 49, 21875, 875, 382725, 3628800, 15120
Offset: 0
Array A(m, n) starts:
[0] 1, 1, 2, 6, 12, 60, 360, 2520, ... A048803
[1] 1, 2, 12, 24, 720, 1440, 60480, 120960, ... A091137
[2] 1, 3, 9, 135, 405, 8505, 127575, 382725, ... A368092
[3] 1, 1, 5, 5, 175, 175, 875, 875, ...
[4] 1, 5, 25, 875, 4375, 21875, 765625, 42109375, ...
[5] 1, 1, 7, 7, 49, 49, 3773, 3773, ...
[6] 1, 7, 49, 343, 2401, 184877, 1294139, 117766649, ...
[7] 1, 1, 1, 1, 11, 11, 143, 143, ...
[8] 1, 1, 1, 11, 11, 143, 1573, 1573, ...
[9] 1, 1, 11, 11, 1573, 1573, 17303, 17303, ...
-
from functools import cache
def Clausen(n, k):
return mul(s for s in map(lambda i: i+n, divisors(k)) if is_prime(s))
@cache
def CumProdClausen(m, n):
return Clausen(m, n) * CumProdClausen(m, n - 1) if n > 0 else 1
for m in range(10): print([m], [CumProdClausen(m, n) for n in range(8)])
Showing 1-2 of 2 results.
Comments