cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A064549 a(n) = n * Product_{primes p|n} p.

Original entry on oeis.org

1, 4, 9, 8, 25, 36, 49, 16, 27, 100, 121, 72, 169, 196, 225, 32, 289, 108, 361, 200, 441, 484, 529, 144, 125, 676, 81, 392, 841, 900, 961, 64, 1089, 1156, 1225, 216, 1369, 1444, 1521, 400, 1681, 1764, 1849, 968, 675, 2116, 2209, 288, 343, 500, 2601, 1352
Offset: 1

Views

Author

Henry Bottomley, Oct 16 2001

Keywords

Comments

Index of first occurrence of n in A003557. - Franklin T. Adams-Watters, Jul 25 2014

Examples

			a(12) = 72 since 12 = 2^2*3 and 12*2*3 = 72.
		

Crossrefs

A permutation of the powerful numbers A001694.
Cf. A003557 (a left inverse), A007947, A057521, A078310, A082695, A202535.

Programs

  • Haskell
    a064549 n = a007947 n * n  -- Reinhard Zumkeller, Jul 23 2013
    
  • Magma
    [n^2/( (&+[Floor(k^n/n)-Floor((k^n - 1)/n) : k in [1..n]]) ): n in [1..50]]; // G. C. Greubel, Nov 02 2018
  • Maple
    a:= n -> n * convert(numtheory:-factorset(n), `*`):
    seq(a(n),n=1..100); # Robert Israel, Jul 25 2014
  • Mathematica
    a[n_] := n * Times @@ FactorInteger[n][[All, 1]]; Array[a, 100] (* Jean-François Alcover, Feb 17 2017 *)
    Table[n*Product[If[PrimeQ[d], d, 1], {d, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Jun 15 2019 *)
  • PARI
    popf(n)= { local(f,p=1); f=factor(n); for(i=1, matsize(f)[1], p*=f[i, 1]); return(p) } { for (n=1, 1000, write("b064549.txt", n, " ", n*popf(n)) ) } \\ Harry J. Smith, Sep 18 2009
    
  • PARI
    A064549(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2]++); factorback(f); }; \\ Antti Karttunen, Aug 30 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X + p^2*X)/(1 - p*X))[n], ", ")) \\ Vaclav Kotesovec, Jun 24 2020
    

Formula

Multiplicative with a(p^k)=p^(k+1) when k>0.
a(n) = n*A007947(n) = n^2/A003557(n).
Dirichlet convolution of A000027 and A202535. - R. J. Mathar, Dec 20 2011
a(n) = A078310(n) - 1. - Reinhard Zumkeller, Jul 23 2013
A003557(a(n)) = n; a(A003557(n)) = A057521(n). - Antti Karttunen, Aug 30 2018
G.f.: Sum_{k>=1} mu(k)^2*phi(k)*k*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Nov 02 2018
From Vaclav Kotesovec, Jun 24 2020: (Start)
Dirichlet g.f.: zeta(s-2) * zeta(s-1) * Product_{primes p} (1 + p^(3-2*s) - p^(4-2*s) - p^(1-s)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = A065463/3 = A065464*Pi^2/18 = 0.234814...
(End)
Sum_{k>=1} 1/a(k) = zeta(2)*zeta(3)/zeta(6) = A082695. - Vaclav Kotesovec, Sep 19 2020
Sum_{k>=1} (-1)^(k+1)/a(k) = zeta(2)*zeta(3)/(3*zeta(6)) = (1/3) * A082695. - Amiram Eldar, Nov 18 2020

A073353 Sum of n and its squarefree kernel.

Original entry on oeis.org

2, 4, 6, 6, 10, 12, 14, 10, 12, 20, 22, 18, 26, 28, 30, 18, 34, 24, 38, 30, 42, 44, 46, 30, 30, 52, 30, 42, 58, 60, 62, 34, 66, 68, 70, 42, 74, 76, 78, 50, 82, 84, 86, 66, 60, 92, 94, 54, 56, 60, 102, 78, 106, 60, 110, 70, 114, 116, 118, 90, 122, 124, 84, 66, 130, 132
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 29 2002

Keywords

Comments

a(n) is even; a(n)=2*n iff n is squarefree.
Least k >n such that n divides k^n. - Benoit Cloitre, Oct 09 2002
a(n) is the smallest integer > n such that the positive integers coprime to a(n) are also coprime to n. - Leroy Quet, Dec 24 2006

Crossrefs

Programs

Formula

a(n) = n + A007947(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 + A065463 = 1.704442... . - Amiram Eldar, Dec 07 2023

A078325 Squarefree numbers of the form m*rad(m)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

2, 5, 10, 17, 26, 33, 37, 65, 73, 82, 101, 109, 122, 129, 145, 170, 197, 201, 217, 226, 257, 290, 362, 393, 401, 433, 442, 485, 501, 530, 577, 626, 649, 677, 730, 785, 842, 865, 901, 962, 969, 973, 1001, 1090, 1126, 1153, 1157, 1226, 1297, 1353, 1370, 1373
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Intersection of A005117 and A224866.

Programs

  • Haskell
    a078325 n = a078325_list !! (n-1)
    a078325_list = filter ((== 1) . a008966) a224866_list
    -- Reinhard Zumkeller, Jul 23 2013
    
  • Mathematica
    powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; Select[Range[1400], SquareFreeQ[#] && powQ[# - 1] &] (* Amiram Eldar, Jul 31 2022 *)
  • PARI
    is(n) = n>1 && issquarefree(n) && ispowerful(n-1); \\ Amiram Eldar, Jul 31 2022

A078313 Number of distinct prime factors of n*rad(n)+1, where rad=A007947 (squarefree kernel).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 1, 2, 2, 3, 3, 2, 2, 4, 1, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 4, 1, 2, 2, 3, 2, 2, 2, 2, 2, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 3, 1, 2, 1, 3, 1, 3, 3, 2, 2, 3, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Comments

a(n)=A001221(A078310(n)).

Crossrefs

Programs

A078314 Total number of prime factors of n*rad(n)+1 counted with multiplicity, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

1, 1, 2, 2, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 2, 4, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 1, 3, 2, 4, 3, 4, 2, 4, 2, 4, 2, 2, 3, 3, 3, 3, 2, 5, 2, 2, 1, 2, 2, 3, 2, 2, 1, 3, 3, 2, 3, 2, 1, 4, 1, 2, 4, 3, 2, 2, 3, 3, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 1, 2, 1, 3, 1, 4, 3, 2, 2, 3, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a078314 = a001222 . a078310  -- Reinhard Zumkeller, Jul 23 2013
  • Mathematica
    a[n_] := PrimeOmega[1 + n * Times @@ FactorInteger[n][[;;, 1]]]; Array[a, 100] (* Amiram Eldar, Sep 08 2024 *)
  • PARI
    a(n)=bigomega(n*vecprod(factor(n)[,1])+1) \\ Charles R Greathouse IV, Jul 09 2013
    

Formula

a(n) = A001222(A078310(n)).

A078315 Minimum exponent in prime factorization of n*rad(n)+1, where rad = A007947 (the radical or squarefree kernel).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Comments

2 = a(4) = a(45) = a(48) = a(140) = a(529) = a(682) = a(3264) = a(3564) = a(4680) = a(4756) = a(166320) = a(194873) = a(330096) = a(364905) = a(2100332) = a(4160200) with all terms in between equal to 1. Is there an n with a(n) > 2? - Charles R Greathouse IV, May 20 2013

Crossrefs

Programs

  • Haskell
    a078315 = a051904 . a078310  -- Reinhard Zumkeller, Jul 23 2013
  • Mathematica
    a[n_] := Min[FactorInteger[1 + n * Times @@ FactorInteger[n][[;;, 1]]][[;;, 2]]]; Array[a, 100] (* Amiram Eldar, Sep 08 2024 *)
  • PARI
    a(n)=my(f=factor(n));f[,2]=apply(n->n+1,f[,2]);vecmin(factor(factorback(f)+1)[,2]) \\ Charles R Greathouse IV, May 20 2013
    

Formula

a(n) = A051904(A078310(n)).

A078318 Sum of divisors of n*rad(n)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

3, 6, 18, 13, 42, 38, 93, 18, 56, 102, 186, 74, 324, 198, 342, 48, 540, 110, 546, 272, 756, 588, 972, 180, 312, 678, 126, 528, 1266, 972, 1596, 84, 1980, 1260, 1842, 256, 2484, 1842, 2286, 402, 2613, 2124, 3534, 1440, 1281, 2220, 4536, 307, 660, 672
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a078318 = a000203 . a078310  -- Reinhard Zumkeller, Jul 23 2013
  • Mathematica
    a[n_] := DivisorSigma[1, 1 + n * Times @@ FactorInteger[n][[;;, 1]]]; Array[a, 100] (* Amiram Eldar, Apr 10 2025 *)
  • PARI
    rad(n)=vecprod(factor(n)[,1])
    a(n)=sigma(n*rad(n)+1) \\ Charles R Greathouse IV, Jul 09 2013
    

Formula

a(n) = A000203(A078310(n)).

A078324 Primes of the form m*rad(m)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

2, 5, 17, 37, 73, 101, 109, 197, 257, 401, 433, 577, 677, 1153, 1297, 1373, 1601, 1801, 2593, 2917, 3137, 3457, 3529, 3889, 4001, 4357, 5477, 7057, 8101, 8713, 8837, 9001, 10369, 12101, 13457, 14401, 15377, 15877, 16001, 16901, 17497, 17957, 18253, 18433, 20809
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Examples

			12*rad(12)+1 = 12*rad(3*2^2)+1 = 12*3*2+1 = 72+1 = 73, therefore 73 is a term.
a(33) = 10369 = 10368 + 1: A078310(1728) = (2*3)*(2^6*3^3) = 10368.
		

Crossrefs

Intersection of A000040 and A224866.

Programs

  • Haskell
    a078324 n = a078324_list !! (n-1)
    a078324_list = filter ((== 1) . a010051') a224866_list
    -- Reinhard Zumkeller, Jul 23 2013
    
  • Mathematica
    powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; Select[Prime[Range[2400]], powQ[# - 1] &] (* Amiram Eldar, Jul 31 2022 *)
  • PARI
    is(n) = isprime(n) && ispowerful(n-1); \\ Amiram Eldar, Jul 31 2022

Extensions

Missing terms 10369, 16001, 17497 and 18433 inserted by Reinhard Zumkeller, Jul 23 2013

A224866 Numbers of the form m*rad(m)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

2, 5, 9, 10, 17, 26, 28, 33, 37, 50, 65, 73, 82, 101, 109, 122, 126, 129, 145, 170, 197, 201, 217, 226, 244, 257, 289, 290, 325, 344, 362, 393, 401, 433, 442, 485, 501, 513, 530, 577, 626, 649, 676, 677, 730, 785, 801, 842, 865, 901, 962, 969, 973, 1001
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 23 2013

Keywords

Comments

A078310 in natural order.

Crossrefs

Subsequences: A078325, A078324.

Programs

  • Haskell
    a224866 n = a224866_list !! (n-1)
    a224866_list = [x | x <- [2..] , let x' = x - 1, let k = a007947 x',
                        let (y,m) = divMod x' k, m == 0, a007947 y == k]
    
  • Mathematica
    powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; Select[Range[1001], powQ[# - 1] &] (* Amiram Eldar, Jul 31 2022 *)
  • PARI
    is(n) = n>1 && ispowerful(n-1) \\ Charles R Greathouse IV, Aug 08 2013, corrected by Amiram Eldar, Jul 31 2022

Formula

a(n) = A001694(n) + 1.

A078319 Sum of distinct prime factors of n*rad(n)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

2, 5, 7, 3, 15, 37, 7, 17, 9, 101, 63, 73, 24, 197, 115, 14, 36, 109, 183, 70, 32, 102, 60, 34, 12, 677, 43, 134, 423, 70, 52, 18, 116, 102, 615, 38, 144, 22, 763, 401, 31, 358, 44, 39, 15, 102, 37, 17, 45, 170, 1303, 55, 288, 18, 108, 162, 20, 678, 1743, 1801, 1863
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a078319 = a008472 . a078310  -- Reinhard Zumkeller, Jul 23 2013
  • Mathematica
    a[n_] := Plus @@ FactorInteger[1 + n*Times @@ FactorInteger[n][[;; , 1]]][[;; , 1]]; Array[a, 100] (* Amiram Eldar, Apr 10 2025 *)
  • PARI
    vecprod(v)=prod(i=1,#v,v[i])
    rad(n)=vecprod(factor(n)[,1])
    a(n)=vecsum(factor(n*rad(n)+1)[,1]) \\ Charles R Greathouse IV, Jul 09 2013
    

Formula

a(n) = A008472(A078310(n)).
Showing 1-10 of 20 results. Next