A254732 a(n) is the least k > n such that n divides k^2.
2, 4, 6, 6, 10, 12, 14, 12, 12, 20, 22, 18, 26, 28, 30, 20, 34, 24, 38, 30, 42, 44, 46, 36, 30, 52, 36, 42, 58, 60, 62, 40, 66, 68, 70, 42, 74, 76, 78, 60, 82, 84, 86, 66, 60, 92, 94, 60, 56, 60, 102, 78, 106, 72, 110, 84, 114, 116, 118, 90, 122, 124, 84, 72
Offset: 1
Examples
a(12) = 18 because 12 divides 18^2, but 12 does not divide 13^2, 14^2, 15^2, 16^2, or 17^2.
Links
- Peter Kagey, Table of n, a(n) for n = 1..5000
Crossrefs
Programs
-
Haskell
a254732 n = head [k | k <- [n + 1 ..], mod (k ^ 2) n == 0] -- Reinhard Zumkeller, Feb 07 2015
-
Mathematica
lk[n_]:=Module[{k=n+1},While[!Divisible[k^2,n],k++];k]; Array[lk,70] (* Harvey P. Dale, Nov 05 2017 *) Table[Module[{k=n+1},While[PowerMod[k,2,n]!=0,k++];k],{n,70}] (* Harvey P. Dale, Aug 07 2025 *)
-
PARI
a(n)=for(k=n+1,2*n,if(k^2%n==0,return(k))) vector(100,n,a(n)) \\ Derek Orr, Feb 06 2015
-
PARI
a(n)=my(t=factorback(factor(n)[,1])); forstep(k=n+t,2*n,t,if(k^2%n==0, return(k))) \\ Charles R Greathouse IV, Feb 07 2015
-
Python
def A254732(n): k = n + 1 while pow(k,2,n): k += 1 return k # Chai Wah Wu, Feb 15 2015
-
Ruby
def a(n) (n+1..2*n).find { |k| k**2 % n == 0 } end
Formula
a(n) = sqrt(n*A072905(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 + zeta(3)/zeta(2) = 1 + A253905 = 1.73076296940143849872... . - Amiram Eldar, Feb 17 2024
Comments