A254733 a(n) is the least k > n such that n divides k^3.
2, 4, 6, 6, 10, 12, 14, 10, 12, 20, 22, 18, 26, 28, 30, 20, 34, 24, 38, 30, 42, 44, 46, 30, 30, 52, 30, 42, 58, 60, 62, 36, 66, 68, 70, 42, 74, 76, 78, 50, 82, 84, 86, 66, 60, 92, 94, 60, 56, 60, 102, 78, 106, 60, 110, 70, 114, 116, 118, 90, 122, 124, 84
Offset: 1
Examples
a(8) = 10 because 8 divides 10^3, but 8 does not divide 9^3.
Links
- Peter Kagey, Table of n, a(n) for n = 1..5000
Crossrefs
Programs
-
Mathematica
lkn[n_]:=Module[{k=n+1},While[PowerMod[k,3,n]!=0,k++];k]; Array[lkn,70] (* Harvey P. Dale, Nov 23 2024 *)
-
PARI
a(n)=for(k=n+1,2*n,if(k^3%n==0,return(k))) vector(100,n,a(n)) \\ Derek Orr, Feb 07 2015
-
Ruby
def a(n) (n+1..2*n).find { |k| k**3 % n == 0 } end
Formula
a(n) = n + A019555(n).
Comments