cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A078310 a(n) = n*rad(n) + 1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

2, 5, 10, 9, 26, 37, 50, 17, 28, 101, 122, 73, 170, 197, 226, 33, 290, 109, 362, 201, 442, 485, 530, 145, 126, 677, 82, 393, 842, 901, 962, 65, 1090, 1157, 1226, 217, 1370, 1445, 1522, 401, 1682, 1765, 1850, 969, 676, 2117, 2210, 289, 344, 501, 2602, 1353
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Comments

A112526(a(n) - 1) = 1, see also A224866. - Reinhard Zumkeller, Jul 23 2013
Increase each exponent in the prime factorization by one, then add 1 to the new product. - M. F. Hasler, Jan 22 2017

Crossrefs

Smallest, greatest factor: A078311, A078312, number of factors: A078313, A078314, min, max exponent: A078315, A078316, number, sum of divisors: A078317, A078318, sum of prime factors: A078319, A078320, Euler's totient: A078321, squarefree kernel: A078322, arithmetic derivative: A078323.
Cf. primes: A078324, squarefree: A078325, squareful: A078326.

Programs

  • Haskell
    a078310 n = n * a007947 n + 1
    -- Reinhard Zumkeller, Jul 23 2013, Oct 19 2011
    
  • Maple
    a:= n-> 1+n*mul(i[1], i=ifactors(n)[2]):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 22 2017
  • Mathematica
    A078310[n_] := n*Times @@ FactorInteger[n][[All, 1]] + 1; Array[A078310, 50] (* G. C. Greubel, Apr 25 2017 *)
  • PARI
    rad(n)=my(f=factor(n)[,1]);prod(i=1,#f,f[i])
    a(n)=n*rad(n)+1 \\ Charles R Greathouse IV, Jul 09 2013
    
  • PARI
    a(n)={n=factor(n);n[,2]+=vectorv(matsize(n)[1],i,1);factorback(n)+1} \\ M. F. Hasler, Jan 22 2017
    
  • PARI
    a(n)=prod(k=1,matsize(n=factor(n))[1],n[k,1]^(n[k,2]+1))+1 \\ M. F. Hasler, Jan 22 2017

Formula

a(n) = A064549(n)+1.

A078313 Number of distinct prime factors of n*rad(n)+1, where rad=A007947 (squarefree kernel).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 1, 2, 2, 3, 3, 2, 2, 4, 1, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 4, 1, 2, 2, 3, 2, 2, 2, 2, 2, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 3, 1, 2, 1, 3, 1, 3, 3, 2, 2, 3, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Comments

a(n)=A001221(A078310(n)).

Crossrefs

Programs

A078314 Total number of prime factors of n*rad(n)+1 counted with multiplicity, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

1, 1, 2, 2, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 2, 4, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 1, 3, 2, 4, 3, 4, 2, 4, 2, 4, 2, 2, 3, 3, 3, 3, 2, 5, 2, 2, 1, 2, 2, 3, 2, 2, 1, 3, 3, 2, 3, 2, 1, 4, 1, 2, 4, 3, 2, 2, 3, 3, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 1, 2, 1, 3, 1, 4, 3, 2, 2, 3, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a078314 = a001222 . a078310  -- Reinhard Zumkeller, Jul 23 2013
  • Mathematica
    a[n_] := PrimeOmega[1 + n * Times @@ FactorInteger[n][[;;, 1]]]; Array[a, 100] (* Amiram Eldar, Sep 08 2024 *)
  • PARI
    a(n)=bigomega(n*vecprod(factor(n)[,1])+1) \\ Charles R Greathouse IV, Jul 09 2013
    

Formula

a(n) = A001222(A078310(n)).

A078316 Maximum exponent in the prime factorization of n*rad(n)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a078316 = a051903 . a078310  -- Reinhard Zumkeller, Jul 23 2013
    
  • Mathematica
    a[n_] := Max[FactorInteger[1 + n * Times @@ FactorInteger[n][[;;, 1]]][[;;, 2]]]; Array[a, 100] (* Amiram Eldar, Sep 07 2024 *)
  • PARI
    a(n) = vecmax(factor(1 + n * vecprod(factorint(n)[, 1]))[, 2]); \\ Amiram Eldar, Sep 07 2024

Formula

a(n) = A051903(A078310(n)).

A078326 Numbers n such that n-1 and n are a pair of consecutive powerful numbers.

Original entry on oeis.org

9, 289, 676, 9801, 12168, 235225, 332929, 465125, 1825201, 11309769, 384199201, 592192225, 4931691076, 5425069448, 13051463049, 221322261601, 443365544449, 865363202001, 8192480787001, 11968683934832, 13325427460801, 15061377048201, 28821995554248
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Comments

a(n) = u*rad(u) = v*rad(v)+1 for appropriate u, v, where rad(n) = A007947(n) is the squarefree kernel.
Also numbers n such that n(n-1) is a powerful number. - Charles R Greathouse IV, Aug 08 2013

Crossrefs

Programs

Formula

a(n) = A060355(n)+1.

Extensions

a(22)-a(23) from Donovan Johnson, Jul 29 2011
Showing 1-5 of 5 results.