A372673 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = phi(k*n) / phi(k).
1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 3, 4, 4, 1, 1, 2, 2, 4, 2, 1, 2, 2, 4, 4, 4, 6, 1, 1, 3, 2, 4, 3, 6, 4, 1, 2, 2, 4, 5, 4, 6, 8, 6, 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 1, 2, 3, 4, 4, 6, 6, 8, 9, 8, 10, 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 1, 2, 2, 4, 4, 4, 7, 8, 6, 8, 10, 8, 12, 1, 1, 3, 2, 5, 3, 6, 4, 9, 5, 10, 6, 12, 6
Offset: 1
Examples
Square array T(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ... 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, ... 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, ... 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, ... 2, 4, 3, 4, 2, 6, 2, 4, 3, 4, 2, 6, 2, 4, 3, 4, 2, 6, ... 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, ... 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, ... 6, 6, 9, 6, 6, 9, 6, 6, 9, 6, 6, 9, 6, 6, 9, 6, 6, 9, ...
Links
- Seiichi Manyama, Antidiagonals n = 1..140, flattened
Crossrefs
Programs
-
PARI
T(n, k) = eulerphi(k*n)/eulerphi(k);