cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A330596 Decimal expansion of Product_{primes p} (1 - 1/p^2 + 1/p^3).

Original entry on oeis.org

7, 4, 8, 5, 3, 5, 2, 5, 9, 6, 8, 2, 3, 6, 3, 5, 6, 4, 6, 4, 4, 2, 1, 5, 0, 4, 8, 6, 3, 7, 9, 1, 0, 6, 0, 1, 6, 4, 1, 6, 4, 0, 3, 4, 3, 0, 0, 5, 3, 2, 4, 4, 0, 4, 5, 1, 5, 8, 5, 2, 7, 9, 3, 9, 2, 5, 9, 2, 5, 5, 8, 6, 8, 9, 5, 4, 9, 5, 8, 8, 3, 4, 2, 1, 2, 6, 2, 0, 6, 8, 1, 4, 6, 4, 7, 0, 9, 8, 1, 3, 1, 4, 3, 3, 5, 4
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2019

Keywords

Comments

The asymptotic density of A337050. - Amiram Eldar, Aug 13 2020

Examples

			0.748535259682363564644215048637910601641640343005324404515852793925925...
		

Crossrefs

Programs

  • Mathematica
    Do[Print[N[Exp[-Sum[q = Expand[(p^2 - p^3)^j]; Sum[PrimeZetaP[Exponent[q[[k]], p]] * Coefficient[q[[k]], p^Exponent[q[[k]], p]], {k, 1, Length[q]}]/j, {j, 1, t}]], 110]], {t, 20, 200, 20}]
  • PARI
    prodeulerrat(1 - 1/p^2 + 1/p^3) \\ Amiram Eldar, Mar 17 2021

Formula

Equals (6/Pi^2) * A065487. - Amiram Eldar, Jun 10 2020

A372662 a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} phi(i*j*k) / phi(k).

Original entry on oeis.org

1, 14, 72, 271, 731, 1649, 3417, 6654, 11495, 18635, 29971, 45088, 67562, 95862, 129315, 180548, 247178, 324463, 429785, 547025, 679318, 853788, 1080248, 1324791, 1617620, 1964622, 2361036, 2813206, 3392778, 3946537, 4704245, 5550066, 6389704, 7421750, 8455877
Offset: 1

Views

Author

Seiichi Manyama, May 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[i*j*k]/EulerPhi[k], {i, 1, n}, {j, 1, n}, {k, 1, n}], {n, 1, 40}] (* Vaclav Kotesovec, May 10 2024 *)
  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, eulerphi(i*j*k)/eulerphi(k))));

A372664 a(n) = Sum_{j=1..n} Sum_{k=1..n} phi(2*j*k) / phi(k).

Original entry on oeis.org

1, 9, 21, 55, 93, 163, 241, 383, 507, 709, 915, 1205, 1497, 1907, 2220, 2794, 3306, 3966, 4610, 5438, 6075, 7113, 8067, 9245, 10272, 11742, 12900, 14552, 16086, 17798, 19552, 21894, 23532, 26082, 27933, 30589, 33105, 36307, 38619, 41945, 45049, 48459, 51875
Offset: 1

Views

Author

Seiichi Manyama, May 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[EulerPhi[2*j*k], {j, 1, n}]/EulerPhi[k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, May 09 2024 *)
  • PARI
    a(n) = sum(j=1, n, sum(k=1, n, eulerphi(2*j*k)/eulerphi(k)));
Showing 1-3 of 3 results.