cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A003557 n divided by largest squarefree divisor of n; if n = Product p(k)^e(k) then a(n) = Product p(k)^(e(k)-1), with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 8, 1, 3, 1, 2, 1, 1, 1, 4, 5, 1, 9, 2, 1, 1, 1, 16, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 8, 7, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 2, 1, 1, 3, 32, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 5, 2, 1, 1, 1, 8, 27, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 16, 1, 7
Offset: 1

Views

Author

Keywords

Comments

a(n) is the size of the Frattini subgroup of the cyclic group C_n - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 07 2001.
Also of the Frattini subgroup of the dihedral group with 2*n elements. - Sharon Sela (sharonsela(AT)hotmail.com), Jan 01 2002
Number of solutions to x^m==0 (mod n) provided that n < 2^(m+1), i.e. the sequence of sequences A000188, A000189, A000190, etc. converges to this sequence. - Henry Bottomley, Sep 18 2001
a(n) is the number of nilpotent elements in the ring Z/nZ. - Laszlo Toth, May 22 2009
The sequence of partial products of a(n) is A085056(n). - Peter Luschny, Jun 29 2009
The first occurrence of n in this sequence is at A064549(n). - Franklin T. Adams-Watters, Jul 25 2014
From Hal M. Switkay, Jul 03 2025: (Start)
For n > 1, a(n) is a proper divisor of n. Thus the sequence n, a(n), a(a(n)), ... eventually becomes 1. This yields a minimal factorization of n as a product of squarefree numbers (A005117), each factor dividing all larger factors, in a factorization that is conjugate to the minimal factorization of n as a product of prime powers (A000961), as follows.
Let f(n,0) = n, and let f(n,k) = a(f(n,k-1)) for k > 0. A051903(n) is the minimal value of k such that f(n,k) = 1. A051903(n) <= log(n)/log(2). Since n/a(n) = A007947(n) is always squarefree by definition, n is a product of squarefree factors in the form Product_{i=1..A051903(n)} [f(n,i-1)/f(n,i)].
The two factorizations correspond to conjugate partitions of bigomega(n) = A001222(n). (End)

Crossrefs

Cf. A007947, A062378, A062379, A064549, A300717 (Möbius transform), A326306 (inv. Möbius transf.), A328572.
Sequences that are multiples of this sequence (the other factor of a pointwise product is given in parentheses): A000010 (A173557), A000027 (A007947), A001615 (A048250), A003415 (A342001), A007434 (A345052), A057521 (A071773).
Cf. A082695 (Dgf at s=2), A065487 (Dgf at s=3).

Programs

  • Haskell
    a003557 n = product $ zipWith (^)
                          (a027748_row n) (map (subtract 1) $ a124010_row n)
    -- Reinhard Zumkeller, Dec 20 2013
    
  • Julia
    using Nemo
    function A003557(n)
        n < 4 && return 1
        q = prod([p for (p, e) ∈ Nemo.factor(fmpz(n))])
        return n == q ? 1 : div(n, q)
    end
    [A003557(n) for n in 1:90] |> println  # Peter Luschny, Feb 07 2021
  • Magma
    [(&+[(Floor(k^n/n)-Floor((k^n-1)/n)): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Nov 02 2018
    
  • Maple
    A003557 := n -> n/ilcm(op(numtheory[factorset](n))):
    seq(A003557(n), n=1..98); # Peter Luschny, Mar 23 2011
    seq(n / NumberTheory:-Radical(n), n = 1..98); # Peter Luschny, Jul 20 2021
  • Mathematica
    Prepend[ Array[ #/Times@@(First[ Transpose[ FactorInteger[ # ] ] ])&, 100, 2 ], 1 ] (* Olivier Gérard, Apr 10 1997 *)
  • PARI
    a(n)=n/factorback(factor(n)[,1]) \\ Charles R Greathouse IV, Nov 17 2014
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X + X)/(1 - p*X))[n], ", ")) \\ Vaclav Kotesovec, Jun 20 2020
    
  • Python
    from sympy.ntheory.factor_ import core
    from sympy import divisors
    def a(n): return n / max(i for i in divisors(n) if core(i) == i)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 16 2017
    
  • Python
    from math import prod
    from sympy import primefactors
    def A003557(n): return n//prod(primefactors(n)) # Chai Wah Wu, Nov 04 2022
    
  • Sage
    def A003557(n) : return n*mul(1/p for p in prime_divisors(n))
    [A003557(n) for n in (1..98)] # Peter Luschny, Jun 10 2012
    

Formula

Multiplicative with a(p^e) = p^(e-1). - Vladeta Jovovic, Jul 23 2001
a(n) = n/rad(n) = n/A007947(n) = sqrt(J_2(n)/J_2(rad(n))), where J_2(n) is A007434. - Enrique Pérez Herrero, Aug 31 2010
a(n) = (J_k(n)/J_k(rad(n)))^(1/k), where J_k is the k-th Jordan Totient Function: (J_2 is A007434 and J_3 A059376). - Enrique Pérez Herrero, Sep 03 2010
Dirichlet convolution of A000027 and A097945. - R. J. Mathar, Dec 20 2011
a(n) = A000010(n)/|A023900(n)|. - Eric Desbiaux, Nov 15 2013
a(n) = Product_{k = 1..A001221(n)} (A027748(n,k)^(A124010(n,k)-1)). - Reinhard Zumkeller, Dec 20 2013
a(n) = Sum_{k=1..n}(floor(k^n/n)-floor((k^n-1)/n)). - Anthony Browne, May 11 2016
a(n) = e^[Sum_{k=2..n} (floor(n/k)-floor((n-1)/k))*(1-A010051(k))*Mangoldt(k)] where Mangoldt is the Mangoldt function. - Anthony Browne, Jun 16 2016
a(n) = Sum_{d|n} mu(d) * phi(d) * (n/d), where mu(d) is the Moebius function and phi(d) is the Euler totient function (rephrases formula of Dec 2011). - Daniel Suteu, Jun 19 2018
G.f.: Sum_{k>=1} mu(k)*phi(k)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Nov 02 2018
Dirichlet g.f.: Product_{primes p} (1 + 1/(p^s - p)). - Vaclav Kotesovec, Jun 24 2020
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))*gcd(n,k).
a(n) = Sum_{k=1..n} mu(gcd(n,k))*(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = A001615(n)/A048250(n) = A003415/A342001(n) = A057521(n)/A071773(n). - Antti Karttunen, Jun 08 2021

Extensions

Secondary definition added to the name by Antti Karttunen, Jun 08 2021

A055231 Powerfree part of n: product of primes that divide n only once.

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 1, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 3, 1, 26, 1, 7, 29, 30, 31, 1, 33, 34, 35, 1, 37, 38, 39, 5, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 2, 55, 7, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 1, 73, 74, 3, 19, 77, 78, 79, 5
Offset: 1

Views

Author

Labos Elemer, Jun 21 2000

Keywords

Comments

The previous name was: Write n = K^2*F where F is squarefree and F = g*f where g = gcd(K,F) and f = F/g; then a(n) = f(n) = F(n)/g(n). Thus gcd(K^2,f) = 1.
Differs from A007913; they coincide if and only if g(n) = 1.
a(n) is the powerfree part of n; i.e., if n=Product(pi^ei) over all i (prime factorization) then a(n)=Product(pi^ei) over those i with ei=1; if n=b*c^2*d^3 then a(n) is minimum possible value of b. - Henry Bottomley, Sep 01 2000
Also denominator of n/rad(n)^2, where rad is the squarefree kernel of n (A007947), numerator: A062378. - Reinhard Zumkeller, Dec 10 2002
Largest unitary squarefree number dividing n (the unitary squarefree kernel of n). - Steven Finch, Mar 01 2004
From Bernard Schott, Dec 19 2022: (Start)
a(n) = 1 iff n is a squareful number (A001694).
1 < a(n) < n iff n is a nonsquarefree number that is not squareful (A332785).
a(n) = n iff n is a squarefree number (A005117). (End)

Crossrefs

Positions of 1's: A001694.
Cf. A008833, A007913, A007947, A000188, A057521, A055773 (computed for n!), A056169 (number of prime divisors), A056671 (number of divisors), A092261 (sum of divisors of the n-th term), A197863, A332785.
Cf. A005117 (subsequence).

Programs

  • Maple
    A055231 := proc(n)
        a := 1 ;
        if n > 1 then
            for f in ifactors(n)[2] do
                if op(2, f) = 1 then
                    a := a*op(1, f) ;
                end if;
            end do:
        end if;
        a ;
    end proc: # R. J. Mathar, Dec 23 2011
  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n]; a[n_] := Denominator[n/rad[n]^2]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jun 20 2013, after Reinhard Zumkeller *)
    f[p_, e_] := If[e==1, p, 1]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
  • PARI
    A055231(n)={
       local(a=1);
       f=factor(n) ;
       for(i=1,matsize(f)[1],
             if( f[i,2] ==1, a *=  f[i,1]
             )
       ) ;
       a ;
    } /* R. J. Mathar, Mar 12 2012 */
    
  • PARI
    a(n) = {my(f=factor(n)); for (k=1, #f~, if (f[k,2] > 1, f[k,2] = 0);); factorback(f);} \\ Michel Marcus, Aug 27 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A055231(n): return prod(p for p, e in factorint(n).items() if e == 1) # Chai Wah Wu, Nov 14 2022
  • Scheme
    ;; With memoization-macro definec.
    (definec (A055231 n) (if (= 1 n) 1 (* (if (= 1 (A067029 n)) (A020639 n) 1) (A055231 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017
    

Formula

a(n) = A007913(n)/gcd(A008833(n), A007913(n)).
a(n) = n/A057521(n).
Multiplicative with a(p) = p and a(p^e) = 1 for e > 1. - Vladeta Jovovic, Nov 01 2001
Dirichlet g.f.: zeta(s)*Product_{primes p} (1 + p^(1-s) - p^(-s) - p^(1-2s) + p^(-2s)). - R. J. Mathar, Dec 21 2011
a(n) = A007947(n)/A071773(n). - observed by Velin Yanev, Aug 27 2017, confirmed by Antti Karttunen, Nov 28 2017
a(1) = 1; for n > 1, a(n) = A020639(n)^A063524(A067029(n)) * a(A028234(n)). - Antti Karttunen, Nov 28 2017
a(n*m) = a(n)*a(m)/(gcd(n,a(m))*gcd(m,a(n))) for all n and m > 0 (conjectured). - Velin Yanev, Feb 06 2019. [This follows easily from the comment of Vladeta Jovovic. - N. J. A. Sloane, Mar 14 2019]
From Vaclav Kotesovec, Dec 19 2019: (Start)
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{primes p} (1 - p^(1-3*s) + p^(2-3*s) - p^(2-2*s) + p^(-2*s) - p^(-s)).
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^2 / 12, where c = Product_{primes p} (1 - 2/p^2 + 2/p^4 - 1/p^5) = 0.394913518073109872954607634745304266741971541072... (End)
a(n) = A197863(n)/n. - Amiram Eldar, Sep 01 2023

Extensions

Name replaced with a simpler description (based on Henry Bottomley's comment) by Antti Karttunen, Nov 28 2017
Incorrect comments and example deleted by Peter Munn, Nov 30 2022

A007948 Largest cubefree number dividing n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 4, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 9, 28, 29, 30, 31, 4, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 12, 49, 50, 51, 52, 53, 18, 55, 28, 57, 58, 59, 60, 61, 62, 63, 4, 65, 66, 67, 68, 69, 70, 71, 36, 73
Offset: 1

Views

Author

R. Muller

Keywords

Crossrefs

Programs

  • Haskell
    a007948 = last . filter ((== 1) . a212793) . a027750_row
    -- Reinhard Zumkeller, May 27 2012, Jan 06 2012
    
  • Mathematica
    Table[Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 0 :> p^Min[e, 2]], {n, 73}] (* Michael De Vlieger, Jul 18 2017 *)
  • PARI
    a(n) = my(f=factor(n)); for (i=1, #f~, f[i,2] = min(f[i, 2], 2)); factorback(f); \\ Michel Marcus, Jun 09 2014
    (Scheme, with memoization-macro definec) (definec (A007948 n) (if (= 1 n) n (* (expt (A020639 n) (min 2 (A067029 n))) (A007948 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017

Formula

Multiplicative with a(p^e) = p^(min(e, 2)). - David W. Wilson, Aug 01 2001
a(n) = max{A212793(A027750(n,k)) * A027750(n,k): k=1..A000005(n)}. - Reinhard Zumkeller, May 27 2012
a(n) = A071773(n)*A007947(n). - observed by Velin Yanev, Aug 20 2017, confirmed by Antti Karttunen, Nov 28 2017
a(n) = n / A062378(n) = n / A003557(A003557(n)). - Antti Karttunen, Nov 28 2017
Sum_{k=1..n} a(k) ~ (1/2) * c * n^2, where c = Product_{p prime} (1 - 1/(p^2*(p+1))) = 0.881513... (A065465). - Amiram Eldar, Oct 13 2022

Extensions

More terms from Henry Bottomley, Jun 18 2001

A078615 a(n) = rad(n)^2, where rad is the squarefree kernel of n (A007947).

Original entry on oeis.org

1, 4, 9, 4, 25, 36, 49, 4, 9, 100, 121, 36, 169, 196, 225, 4, 289, 36, 361, 100, 441, 484, 529, 36, 25, 676, 9, 196, 841, 900, 961, 4, 1089, 1156, 1225, 36, 1369, 1444, 1521, 100, 1681, 1764, 1849, 484, 225, 2116, 2209, 36, 49, 100, 2601, 676, 2809, 36, 3025, 196
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 10 2002

Keywords

Comments

It is conjectured that only 1 and 1782 satisfy a(k) = sigma(k). See Broughan link. - Michel Marcus, Feb 28 2019

Crossrefs

Programs

  • Maple
    a := n -> mul(f,f=map(x->x^2,select(isprime,divisors(n))));
    seq(a(n), n=1..56);  # Peter Luschny, Mar 30 2014
  • Mathematica
    a[n_] := Times @@ FactorInteger[n][[All, 1]]^2; Array[a, 60] (* Jean-François Alcover, Jun 04 2019 *)
  • PARI
    a(n)=my(f=factor(n)[,1]);prod(i=1,#f,f[i])^2 \\ Charles R Greathouse IV, Aug 06 2013

Formula

Multiplicative with a(p^e) = p^2. - Mitch Harris, May 17 2005
G.f.: Sum_{k>=1} mu(k)^2*J_2(k)*x^k/(1 - x^k), where J_2() is the Jordan function. - Ilya Gutkovskiy, Nov 06 2018
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)/3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A002117 * A330523 / 3 = 0.214725... . - Amiram Eldar, Oct 30 2022
a(n) = Sum_{1 <= i, j <= n} ( mobius(n/gcd(i, j, n)) )^2. - Peter Bala, Jan 28 2024
a(n) = Sum_{d|n} mu(d)^2*J_2(d), where J_2 = A007434. - Ridouane Oudra, Jul 24 2025
a(n) = (-1)^omega(n) * Sum_{d|n} mu(d)*Psi_2(d), where omega = A001221 and Psi_2 = A065958. - Ridouane Oudra, Aug 01 2025

A295884 Number of exponents larger than 3 in the prime factorization of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2017

Keywords

Comments

a(1296) is the first term greater than 1, and a(810000) is the first term greater than 2. - Harvey P. Dale, Dec 22 2017

Examples

			For n = 16 = 2^4, there is one exponent and it is larger than 3, thus a(16) = 1.
For n = 96 = 2^5 * 3^1, there are two exponents, and the other one is larger than 3, thus a(96) = 1.
For n = 1296 = 2^4 * 3^4, there are two exponents larger than 3, thus a(1296) = 2.
		

Crossrefs

Programs

Formula

Additive with a(p^e) = 1 when e > 3, 0 otherwise.
a(n) = A295659(n) - A295883(n).
a(n) = A056170(A062378(n)) = A056170(A003557(A003557(n))) = A001221(A003557^3(n)).
a(n) = A001221(A053164(n)) = A001221(A008835(n)).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Sum_{p prime} 1/p^4 = 0.076993... (A085964). - Amiram Eldar, Nov 01 2020

A062379 n divided by largest 4th-power-free factor of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Henry Bottomley, Jun 18 2001

Keywords

Crossrefs

Programs

Formula

a(n) = n/A058035(n).
Multiplicative with a(p^e) = p^max(e-3, 0). - Amiram Eldar, Sep 07 2020

A073753 a(n) = A073752(A073752(n)), where A073752(n) = gcd(n/spf(n), n/gpf(n)), with spf(n) as the smallest and gpf(n) as the greatest prime factor of n (see A020639, A006530).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 07 2002

Keywords

Comments

a(n) = A062378(n) for n<90, but a(90)=3 <> A062378(90)=1.

Crossrefs

Differs from A062378 for the first time at n=90.

Programs

Formula

a(n) = A073752(A073752(n)).

Extensions

Name edited by Antti Karttunen, Sep 23 2017

A128972 n^3 - 1 divided by its largest cube divisor.

Original entry on oeis.org

7, 26, 63, 124, 215, 342, 511, 91, 37, 1330, 1727, 2196, 2743, 3374, 4095, 614, 17, 254, 7999, 9260, 10647, 12166, 13823, 1953, 17575, 19682, 813, 24388, 26999, 29790, 32767, 4492, 39303, 42874, 46655, 1876, 54871, 59318, 63999, 8615, 74087, 79506
Offset: 2

Views

Author

Jonathan Vos Post, Apr 28 2007

Keywords

Comments

In other words, cubefree part of n^3-1, or cubefree kernel of n^3-1. Cube analog of A068310.

Examples

			a(9) = (9^3-1)/8 = (2^3 * 7 * 13)/(2^3) = 728/8 = 91.
a(10) = (10^3-1)/27 = (3^3 * 37)/(3^3) = 999/27 = 37.
a(18) = (18^3-1)/343 = (7^3 * 17)/(7^3) = 5831/343 = 17.
		

Crossrefs

Programs

  • Maple
    a:= n -> mul(f[1]^(f[2] mod 3), f = ifactors(n^3-1)[2]):
    seq(a(n),n=2..100); # Robert Israel, Sep 24 2014

Formula

a(n) = A062378(A068601(n)) = A062378(n^3-1).

Extensions

More terms from Carl R. White, Nov 09 2010

A128251 n^4 - 1 divided by its largest fourth power divisor.

Original entry on oeis.org

15, 5, 255, 39, 1295, 150, 4095, 410, 9999, 915, 20735, 1785, 38415, 3164, 65535, 5220, 104975, 8145, 159999, 12155, 234255, 17490, 331775, 24414, 456975, 33215, 614655, 44205, 809999, 57720, 1048575, 74120, 1336335, 93789, 1679615, 117135
Offset: 2

Views

Author

Jonathan Vos Post, May 03 2007

Keywords

Comments

In other words, biquadratefree part of n^4-1, or biquadratefree kernel of n^4-1. Fourth power analog of what A128972 is to cubes and A068310 is to squares. A046100 Biquadratefree numbers. A008835 Largest 4th power dividing n.

Examples

			a(3) = 5 because (3^4 - 1)/16 = 80/16 = (2^4 * 5)/(2^4) = 5.
a(5) = 39 because (5^4 - 1)/16 = 624/16 = (2^4 * 3 * 13)/(2^4) = 39.
a(7) = 150 because (7^4 - 1)/16 = 2400/16 = (2^5 * 3 * 5^2)/(2^4) = 150.
a(9) = 410 because (9^4 - 1)/16 = 6560/16 = (2^5 * 5 * 41)/(2^4) = 410.
a(63) = 61535 because (63^4 - 1)/256 = 15752960/256 = (2^8 * 5 * 31 * 397)/(2^8) = 61535.
		

Crossrefs

Formula

a(n) = (n^4 - 1)/A008835(n^4 - 1) = (A000583(n)-1)/A008835((A000583(n)-1)).
Showing 1-9 of 9 results.