cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A062378 n divided by largest cubefree factor of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Henry Bottomley, Jun 18 2001

Keywords

Comments

Numerator of n/rad(n)^2, where rad is the squarefree kernel of n (A007947), denominator: A055231. - Reinhard Zumkeller, Dec 10 2002

Crossrefs

Cf. A000189, A000578, A007948, A008834, A019555, A048798, A050985, A053149, A053150, A056551, A056552. See A003557 for squares and A062379 for 4th powers.
Differs from A073753 for the first time at n=90, where a(90) = 1, while A073753(90) = 3.

Programs

Formula

a(n) = n / A007948(n).
a(n) = A003557(A003557(n)). - Antti Karttunen, Nov 28 2017
Multiplicative with a(p^e) = p^max(e-2, 0). - Amiram Eldar, Sep 07 2020
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^s - 1/p^(2*s-1) + 1/p^(2*s)). - Amiram Eldar, Dec 07 2023

A073752 Greatest common divisor of n/spf(n) and n/gpf(n) where spf(n) is the smallest and gpf(n) is the greatest prime factor of n (see A020639, A006530).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 8, 1, 3, 1, 2, 1, 1, 1, 4, 5, 1, 9, 2, 1, 3, 1, 16, 1, 1, 1, 6, 1, 1, 1, 4, 1, 3, 1, 2, 3, 1, 1, 8, 7, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 6, 1, 1, 3, 32, 1, 3, 1, 2, 1, 5, 1, 12, 1, 1, 5, 2, 1, 3, 1, 8, 27, 1, 1, 6, 1, 1, 1, 4, 1, 9, 1, 2, 1, 1, 1, 16, 1, 7, 3, 10, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 07 2002

Keywords

Comments

a(n) = if n=p^k (p prime, k>0) then p^(k-1) else n/(spf(n)*gpf(n)).

Crossrefs

A073753(n) = a(a(n)).

Programs

  • Mathematica
    gc[n_]:=Module[{fi=Transpose[FactorInteger[n]][[1]]},GCD[n/First[fi], n/Last[ fi]]]; Array[gc,110] (* Harvey P. Dale, Jun 17 2012 *)

Formula

a(n) = GCD(A032742(n), A052126(n)).
Showing 1-2 of 2 results.