cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 345 results. Next

A342001 Arithmetic derivative without its inherited divisor; the arithmetic derivative of n divided by A003557(n), which is a common divisor of both n and A003415(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 3, 2, 7, 1, 8, 1, 9, 8, 4, 1, 7, 1, 12, 10, 13, 1, 11, 2, 15, 3, 16, 1, 31, 1, 5, 14, 19, 12, 10, 1, 21, 16, 17, 1, 41, 1, 24, 13, 25, 1, 14, 2, 9, 20, 28, 1, 9, 16, 23, 22, 31, 1, 46, 1, 33, 17, 6, 18, 61, 1, 36, 26, 59, 1, 13, 1, 39, 11, 40, 18, 71, 1, 22, 4, 43, 1, 62, 22, 45, 32, 35, 1, 41, 20
Offset: 1

Views

Author

Antti Karttunen, Feb 28 2021

Keywords

Comments

See also the scatter plot of A342002 that seems to reveal some interesting internal structure in this sequence, not fully explained by the regularity of primorial base expansion used in the latter sequence. - Antti Karttunen, May 09 2022

Crossrefs

Cf. A342002 [= a(A276086(n))], A342463 [= a(A342456(n))], A351945 [= a(A181819(n))], A353571 [= a(A003961(n))].
Cf. A346485 (Möbius transform), A347395 (convolution with Liouville's lambda), A347961 (with itself), and A347234, A347235, A347954, A347959, A347963, A349396, A349612 (for convolutions with other sequences).
Cf. A007947.

Programs

  • Mathematica
    Array[#1/#2 & @@ {If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &@ Abs[#], #/Times @@ FactorInteger[#][[All, 1]]} &, 91] (* Michael De Vlieger, Mar 11 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A342001(n) = (A003415(n) / A003557(n));
    
  • Python
    from math import prod
    from sympy import factorint
    def A342001(n):
        q = prod(f:=factorint(n))
        return sum(q*e//p for p, e in f.items()) # Chai Wah Wu, Nov 04 2022

Formula

a(n) = A003415(n) / A003557(n).
For all n >= 0, a(A276086(n)) = A342002(n).
a(n) = A342414(n) * A342416(n) = A342459(n) * A342919(n). - Antti Karttunen, Apr 30 2022
Dirichlet g.f.: Dirichlet g.f. of A007947 * Sum_{p prime} p^s/((p^s-1)*(p^s+p-1)) = zeta(s) * Product_{p prime} (1+p^(1-s)-p^(-s)) * Sum_{p prime} p^s/((p^s-1)*(p^s+p-1)). - Sebastian Karlsson, May 05 2022
Sum_{k=1..n} a(k) ~ c * A065464 * Pi^2 * n^2 / 12, where c = Sum_{j>=2} (1/2 + (-1)^j * (Fibonacci(j) - 1/2))*PrimeZetaP(j) = 0.4526952873143153104685540856936425315834753528741817723313791528384... - Vaclav Kotesovec, May 09 2022

A328572 Primorial base expansion of n converted into its prime product form, but with 1 subtracted from all nonzero digits: a(n) = A003557(A276086(n)).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 5, 5, 5, 5, 15, 15, 25, 25, 25, 25, 75, 75, 125, 125, 125, 125, 375, 375, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 5, 5, 5, 5, 15, 15, 25, 25, 25, 25, 75, 75, 125, 125, 125, 125, 375, 375, 7, 7, 7, 7, 21, 21, 7, 7, 7, 7, 21, 21, 35, 35, 35, 35, 105, 105, 175, 175, 175, 175, 525, 525, 875, 875, 875, 875
Offset: 0

Views

Author

Antti Karttunen, Oct 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Block[{b = MixedRadix[Reverse@ Prime@ Range@ 12]}, Array[#1/(Times @@ #2[[All, 1]]) & @@ {#1, FactorInteger[#]} &[Times @@ Power @@@ #] &@ Transpose@ {Prime@ Range@ Length@ #, Reverse@ #} &@ IntegerDigits[#, b] &, 87, 0]] (* Michael De Vlieger, Mar 12 2021 *)
  • PARI
    A328572(n) = { my(m=1, p=2); while(n, if(n%p, m *= p^((n%p)-1)); n = n\p; p = nextprime(1+p)); (m); };

Formula

a(n) = A003557(A276086(n)).
a(n) = A276086(n) / A328571(n).
a(n) = A328475(n) / A328573(n).
For all n >= 1, 1+A051903(a(n)) = A328114(n).
a(n) = A085731(A276086(n)) = gcd(A276086(n), A327860(n)). - Antti Karttunen, Feb 28 2021

A291751 Lexicographically earliest such sequence a that a(i) = a(j) => A003557(i) = A003557(j) and A048250(i) = A048250(j), for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 6, 11, 12, 13, 13, 14, 10, 15, 16, 17, 18, 19, 13, 20, 21, 22, 23, 24, 25, 26, 18, 27, 28, 29, 28, 30, 31, 32, 33, 34, 22, 35, 36, 37, 38, 26, 28, 39, 40, 41, 26, 42, 29, 43, 26, 44, 45, 46, 32, 47, 48, 35, 49, 50, 51, 52, 53, 54, 35, 52, 26, 55, 56, 57, 58, 59, 35, 60, 45, 61, 62, 63, 51, 64, 65, 66, 67, 68, 46, 69, 70, 47, 71
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2017

Keywords

Comments

Restricted growth sequence transform of A291750, which means that this is the lexicographically least sequence a, such that for all i, j: a(i) = a(j) <=> A291750(i) = A291750(j) <=> A003557(i) = A003557(j) and A048250(i) = A048250(j). That this is equal to the definition given in the title follows because any such lexicographically least sequence satisfying relation <=> is also the least sequence satisfying relation => with the same parameters.
Sigma (A000203) and psi (A001615) are functions of this sequence. See comments in A291750 for the reason. For example, to find the value of A001615(n) when we know just a(n), but without knowing n, let m be the least i for which a(i) = a(n); then A001615(n) = A003991(A291750(m)) = A003557(m) * A048250(m).

Crossrefs

Differs from A286603 for the first time at n = 25, where a(25) = 21, while A286603(25) = 14.

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    v291751 = rgs_transform(vector(65537,n,A291750(n)));
    A291751(n) = v291751[n];

Extensions

Name changed and comments added by Antti Karttunen, Nov 24 2018

A291750 Compound filter: a(n) = P(A003557(n), A048250(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 4, 7, 8, 16, 67, 29, 19, 18, 154, 67, 80, 92, 277, 277, 53, 154, 94, 191, 173, 497, 631, 277, 109, 50, 862, 75, 302, 436, 2557, 497, 169, 1129, 1432, 1129, 142, 704, 1771, 1541, 214, 862, 4561, 947, 668, 328, 2557, 1129, 179, 98, 236, 2557, 905, 1432, 199, 2557, 355, 3161, 4006, 1771, 2630, 1892, 4561, 564, 593, 3487, 10297, 2279, 1487, 4561, 10297, 2557
Offset: 1

Views

Author

Antti Karttunen, Sep 04 2017

Keywords

Comments

A000203 (sigma(n)) is a function of this sequence, because formula
A000203(n) = A092261(n) * A295294(n)
can be rewritten as a relation:
where A057521(n) = A064549(A003557(n)), thus A000203(n) is a function of A003557(n) and A048250(n), the values that are packed here into a(n).
A001615 (Dedekind's psi) is a function of this sequence, because it can be written as A001615(n) = A003557(n)*A048250(n).

Crossrefs

Cf. A000027, A000203, A001615, A003557, A048250, A291751 (rgs-version of this filter).

Programs

Formula

a(n) = (1/2)*(2 + ((A003557(n) + A048250(n))^2) - A003557(n) - 3*A048250(n)).

A295300 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A003557(n), A046523(n), A048250(n)].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 44, 49, 50, 51, 44, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 58, 62, 65, 66, 67, 68, 69, 70, 58, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 80
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2017

Keywords

Comments

Restricted growth sequence transform of A291752.
For all i, j:
a(i) = a(j) => A291751(i) = A291751(j),
a(i) = a(j) => A326199(i) = A326199(j) => A294877(i) = A294877(j),
a(i) = a(j) => A322021(i) = A322021(j),
a(i) = a(j) => A295888(i) = A295888(j),
a(i) = a(j) => A296090(i) = A296090(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    Aux295300(n) = (1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n));
    v295300 = rgs_transform(vector(up_to,n,Aux295300(n)));
    A295300(n) = v295300[n];

Extensions

Name changed and the comments section added by Antti Karttunen, Jul 13 2019

A344025 Lexicographically earliest infinite sequence such that a(i) = a(j) => A003415(i) = A003415(j) and A003557(i) = A003557(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 21, 2, 42, 2, 43, 44, 45, 46, 47, 2, 48, 49, 50, 2, 51, 2, 52, 53, 54, 46, 55, 2, 56, 57, 58, 2, 59, 41, 60, 61, 62, 2, 63, 37, 64
Offset: 1

Views

Author

Antti Karttunen, May 07 2021

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A003415(n), A003557(n)], where A003415(n) is the arithmetic derivative of n, and A003557(n) is n divided by its largest squarefree divisor.
For all i, j:
parent(i) = parent(j) => a(i) = a(j),
a(i) = a(j) => A342001(i) = A342001(j),
a(i) = a(j) => A369051(i) = A369051(j) => A085731(i) = A085731(j).
Where "parent" can be any of the sequences A351236, A351260, A353520, A353521, A369050, for example.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    Aux344025(n) = [A003415(n), A003557(n)];
    v344025 = rgs_transform(vector(up_to, n, Aux344025(n)));
    A344025(n) = v344025[n];

A295887 Filter sequence combining A003557(n) and A173557(n); the restricted growth sequence transform of A291756.

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 5, 6, 7, 4, 8, 9, 10, 5, 11, 12, 13, 7, 14, 15, 10, 8, 16, 17, 18, 10, 19, 20, 21, 11, 22, 23, 24, 13, 25, 26, 27, 14, 25, 28, 29, 10, 30, 31, 32, 16, 33, 34, 35, 18, 36, 37, 38, 19, 29, 39, 27, 21, 40, 41, 42, 22, 43, 44, 45, 24, 46, 47, 48, 25, 49, 50, 51, 27, 52, 53, 42, 25, 54, 55, 56, 29, 57, 37, 58, 30, 59, 60, 61, 32, 51, 62, 42, 33, 51
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2017

Keywords

Comments

First define function f(n) = (1/2)*(2 + ((A003557(n) + A173557(n))^2) - A003557(n) - 3*A173557(n)), or in short, f(n) = P(A003557(n), A173557(n)), where P(n,k) is triangular table sequence A000027 used as an injective N x N -> N pairing function. Then apply the restricted growth sequence transform to the sequence f(1), f(2), f(3), ... See the example-section.
This is also the restricted growth sequence transform of sequence A291756, as A291756(n) = P(A003557(n), A000010(n)), where again P(n,k) is sequence A000027 used as a pairing function. Given either an ordered pair (A003557(n),A000010(n)) or (A003557(n),A173557(n)), the other one can be computed because A000010(n) = A003557(n)*A173557(n).
Note that the exact pairing function P used is not important, as long as it provides an injective mapping N x N -> N. So instead of Cantor's mapping we could as well used bit-interleaving A054238 (Morton code) to pack together A003557(n) and A173557(n), or equally, A000010(n) and A003557(n).

Examples

			The first ten terms of the sequence f(n) = (1/2)*(2 + ((A003557(n) + A173557(n))^2) - A003557(n) - 3*A173557(n)) are 1, 1, 2, 3, 7, 2, 16, 10, 9, 7. When we assign to each newly occurring term the least unused number k so far (starting by giving k=1 for the initial term, this k increases by one for each new distinct term produced by f(n) when n grows), and for each repeated term the same number it was given the previous time (equal to the number it was given for the first time), we obtain 1, 1, 2, 3, 4, 2, 5, 6, 7, 4, the first 10 terms of this sequence. Note how f(10) = 7 gets 4 because when seven occurred for the first time at f(5), it was the 4th distinct new number in that sequence.
This is also true for the sequence A291756 although there the terms are different: 1, 1, 2, 5, 7, 2, 16, 25, 31, 7.
		

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ This function from Michel Marcus, Oct 31 2017
    Anotsubmitted7(n) = (1/2)*(2 + ((A003557(n)+A173557(n))^2) - A003557(n) - 3*A173557(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Anotsubmitted7(n))),"b295887.txt");

A344592 a(n) = A003557(A276086(A108951(n))).

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 1, 1, 1, 7, 1, 125, 1, 11, 16807, 15, 1, 35, 1, 343, 161051, 13, 1, 25, 9317, 17, 1, 1331, 1, 2401, 1, 1, 371293, 19, 253333223, 42875, 1, 23, 1419857, 1, 1, 1, 1, 2197, 14641, 29, 1, 49, 371293, 6684099653, 2476099, 4913, 1, 55, 37349, 19487171, 6436343, 31, 1, 5929, 1, 37, 20449, 21, 582622237229761, 1792160394037
Offset: 1

Views

Author

Antti Karttunen, May 26 2021

Keywords

Crossrefs

Cf. A344591 (positions of ones), A344593 (rgs-transform).

Programs

  • Mathematica
    Block[{b = MixedRadix[Reverse@ Prime@ Range@ 20]}, Array[#/(Times @@ FactorInteger[#][[All, 1]]) &@ Apply[Times, Power @@@ #] &@ Transpose@ {Prime@ Range@ Length@ #, Reverse@ #} &@ IntegerDigits[#, b] &@ Apply[Times, Map[(Times @@ Prime@ Range@ PrimePi@ #1)^#2 & @@ # &, FactorInteger[#]]] &, 66]] (* Michael De Vlieger, Jul 14 2021 *)
  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
    A328572(n) = { my(m=1, p=2); while(n, if(n%p, m *= p^((n%p)-1)); n = n\p; p = nextprime(1+p)); (m); };
    A344592(n) = A328572(A108951(n));
    
  • PARI
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A344592(n) = A003557(A276086(A108951(n)));

Formula

a(n) = A329047(n) / A342920(n).
a(n) = A085731(A324886(n)) = gcd(A324886(n), A329047(n)) = A324886(n) / A346091(n). - Antti Karttunen, Jul 09 2021

A347395 Dirichlet convolution of Liouville's lambda (A008836) with A342001, where A342001(n) = A003415(n)/A003557(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 2, 1, 5, 1, 3, 1, 7, 6, 2, 1, 2, 1, 5, 8, 11, 1, 5, 1, 13, 2, 7, 1, 14, 1, 3, 12, 17, 10, 2, 1, 19, 14, 9, 1, 20, 1, 11, 5, 23, 1, 5, 1, 2, 18, 13, 1, 4, 14, 13, 20, 29, 1, 14, 1, 31, 7, 3, 16, 32, 1, 17, 24, 34, 1, 3, 1, 37, 3, 19, 16, 38, 1, 9, 2, 41, 1, 20, 20, 43, 30, 21, 1, 9, 18, 23, 32
Offset: 1

Views

Author

Antti Karttunen, Sep 02 2021

Keywords

Comments

It seems that all the terms after the initial zero are strictly positive. Checked up to n = 2^24. Compare to A346485.

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A008836(n/d) * A342001(d).
Sum_{k=1..n} a(k) ~ c * A065464 * Pi^4 * n^2 / 180, where c = Sum_{j>=2} (1/2 + (-1)^j * (Fibonacci(j) - 1/2))*PrimeZetaP(j) = 0.4526952873143153104685540856936425315834753528741817723313791528384... - Vaclav Kotesovec, Mar 04 2023

A300717 Möbius transform of A003557, n divided by its largest squarefree divisor.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 6, 0, 0, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 6
Offset: 1

Views

Author

Antti Karttunen, Mar 11 2018

Keywords

Comments

Multiplicative because A003557 is. - Andrew Howroyd, Jul 27 2018

Crossrefs

Programs

  • Maple
    with(numtheory): A003557 := n -> n/ilcm(op(numtheory[factorset](n))):
    seq(add(mobius(d)*A003557(n/d), d in divisors(n)), n=1..100); # Ridouane Oudra, Nov 18 2019
  • Mathematica
    Table[DivisorSum[n, MoebiusMu[#] EulerPhi[#] EulerPhi[n/#] &], {n, 108}] (* Michael De Vlieger, Nov 18 2019 *)
    f[p_, e_] := If[e == 1, 0, (p - 1)*p^(e - 2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 06 2022 *)
  • PARI
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); }; \\ From A003557
    A300717(n) = sumdiv(n,d,moebius(n/d)*A003557(d));
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 0, (f[i,1] - 1)*f[i,1]^(f[i,2] - 2)));} \\ Amiram Eldar, Dec 06 2022

Formula

a(n) = Sum_{d|n} A008683(n/d)*A003557(d).
a(n) = A000010(n) - A300718(n).
a(n) = A003557(n) - A300719(n).
Multiplicative with a(p) = 0 and a(p^e) = (p-1)*p^(e-2) for prime p and e>1. - Werner Schulte, Sep 27 2018
Dirichlet convolution with A003958 equals A000010. - Werner Schulte, Sep 28 2018
a(n) = Sum_{d|n} mu(d)*phi(d)*phi(n/d). - Ridouane Oudra, Nov 18 2019
Dirichlet convolution of A000010 and A097945. - R. J. Mathar, Jun 02 2020
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} phi(gcd(n,k))*mu(gcd(n,k)).
a(n) = Sum_{k=1..n} phi(gcd(n,k))*mu(n/gcd(n,k)). (End)
Showing 1-10 of 345 results. Next