cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A305801 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = 0 if n is an odd prime, with f(n) = n for all other n.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 29, 30, 3, 31, 3, 32, 33, 34, 3, 35, 36, 37, 38, 39, 3, 40, 41, 42, 43, 44, 3, 45, 3, 46, 47, 48, 49, 50, 3, 51, 52, 53, 3, 54, 3, 55, 56, 57, 58, 59, 3, 60, 61, 62, 3, 63, 64, 65, 66, 67, 3, 68, 69, 70, 71, 72, 73, 74, 3, 75, 76, 77, 3, 78, 3, 79, 80
Offset: 1

Views

Author

Antti Karttunen, Jun 14 2018

Keywords

Comments

The original name was: "Filter sequence for a(odd prime) = constant sequences", which stemmed from the fact that for all i, j, a(i) = a(j) => b(i) = b(j) for any sequence b that obtains a constant value for all odd primes A065091.
For example, we have for all i, j:
a(i) = a(j) => A305800(i) = A305800(j),
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A305891(i) = A305891(j) => A291761(i) = A291761(j).
There are several filter sequences "above" this one (meaning that they have finer equivalence class partitioning), for example, we have, for all i, j:
[where odd primes are further distinguished by]
A305900(i) = A305900(j) => a(i) = a(j), [whether p = 3 or > 3]
A319350(i) = A319350(j) => a(i) = a(j), [A007733(p)]
A319704(i) = A319704(j) => a(i) = a(j), [p mod 4]
A319705(i) = A319705(j) => a(i) = a(j), [A286622(p)]
A331304(i) = A331304(j) => a(i) = a(j), [parity of A000720(p)]
A336855(i) = A336855(j) => a(i) = a(j). [distance to the next larger prime]

Crossrefs

Cf. A305900, A319350, A319704, A319705, A331304, A336855 (sequences with finer equivalence class partitioning).
Cf. also A003602, A103391, A295300, A305795, A324400, A331300, A336460 (for similar constructions or similarly useful sequences).

Programs

  • Mathematica
    Array[If[# <= 2, #, If[PrimeQ[#], 3, 2 + # - PrimePi[#]]] &, 105] (* Michael De Vlieger, Oct 18 2021 *)
  • PARI
    A305801(n) = if(n<=2,n,if(isprime(n),3,2+n-primepi(n)));

Formula

a(1) = 1, a(2) = 2; for n > 2, a(n) = 3 for odd primes, and a(n) = 2+n-A000720(n) for composite n.
For n > 2, a(n) = 1 + A305800(n).

Extensions

Name changed and Comment section rewritten by Antti Karttunen, Oct 17 2021

A305800 Filter sequence for a(prime) = constant sequences.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 40, 41, 42, 43, 2, 44, 2, 45, 46, 47, 48, 49, 2, 50, 51, 52, 2, 53, 2, 54, 55, 56, 57, 58, 2, 59, 60, 61, 2, 62, 63, 64, 65, 66, 2, 67, 68, 69, 70, 71, 72, 73, 2, 74, 75, 76, 2, 77, 2, 78, 79, 80, 2, 81, 2, 82, 83, 84, 2, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96
Offset: 1

Views

Author

Antti Karttunen, Jun 14 2018

Keywords

Comments

Restricted growth sequence transform of A239968.
In the following, A stands for this sequence, A305800, and S -> T (where S and T are sequence A-numbers) indicates that for all i, j: S(i) = S(i) => T(i) = T(j).
For example, the following implications hold:
A -> A300247 -> A305897 -> A077462 -> A101296,
A -> A290110 -> A300250 -> A101296.

Crossrefs

Differs from A296073 for the first time at n=125, as a(125) = 96, while A296073(125) = 33.
Cf. also A305900, A305801, A295300, A289626 for other "upper level" filters.

Programs

  • Mathematica
    Join[{1},Table[If[PrimeQ[n],2,1+n-PrimePi[n]],{n,2,150}]] (* Harvey P. Dale, Jul 12 2019 *)
  • PARI
    A305800(n) = if(1==n,n,if(isprime(n),2,1+n-primepi(n)));

Formula

a(1) = 1; for n > 1, a(n) = 2 for prime n, and a(n) = 1+n-A000720(n) for composite n.

A324400 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j) for all i, j >= 1, where f(n) = -1 if n = 2^k and k > 0, and f(n) = n for all other numbers.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 10, 11, 12, 13, 2, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 2, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 2, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2019

Keywords

Comments

In the following, A stands for this sequence, A324400, and S -> T (where S and T are sequence A-numbers) indicates that for all i, j >= 1: S(i) = S(i) => T(i) = T(j).
For example, the following chains of implications hold:
A -> A286619 -> A005811,
and
A -> A003602 -> A286622 -> A000120,
-> A323889,
-> A000593,
-> A001227,
among many others.

Crossrefs

Programs

  • PARI
    A000523(n) = if(n<1, 0, #binary(n)-1);
    A324400(n) = if(n<4,n,if(!bitand(n,n-1),2,1+n-A000523(n)));

Formula

If n <= 3, a(n) = n; and for n >= 4, if A209229(n) = 1, then a(n) = 2, otherwise a(n) = 1 + n - A000523(n).

A291751 Lexicographically earliest such sequence a that a(i) = a(j) => A003557(i) = A003557(j) and A048250(i) = A048250(j), for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 6, 11, 12, 13, 13, 14, 10, 15, 16, 17, 18, 19, 13, 20, 21, 22, 23, 24, 25, 26, 18, 27, 28, 29, 28, 30, 31, 32, 33, 34, 22, 35, 36, 37, 38, 26, 28, 39, 40, 41, 26, 42, 29, 43, 26, 44, 45, 46, 32, 47, 48, 35, 49, 50, 51, 52, 53, 54, 35, 52, 26, 55, 56, 57, 58, 59, 35, 60, 45, 61, 62, 63, 51, 64, 65, 66, 67, 68, 46, 69, 70, 47, 71
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2017

Keywords

Comments

Restricted growth sequence transform of A291750, which means that this is the lexicographically least sequence a, such that for all i, j: a(i) = a(j) <=> A291750(i) = A291750(j) <=> A003557(i) = A003557(j) and A048250(i) = A048250(j). That this is equal to the definition given in the title follows because any such lexicographically least sequence satisfying relation <=> is also the least sequence satisfying relation => with the same parameters.
Sigma (A000203) and psi (A001615) are functions of this sequence. See comments in A291750 for the reason. For example, to find the value of A001615(n) when we know just a(n), but without knowing n, let m be the least i for which a(i) = a(n); then A001615(n) = A003991(A291750(m)) = A003557(m) * A048250(m).

Crossrefs

Differs from A286603 for the first time at n = 25, where a(25) = 21, while A286603(25) = 14.

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    v291751 = rgs_transform(vector(65537,n,A291750(n)));
    A291751(n) = v291751[n];

Extensions

Name changed and comments added by Antti Karttunen, Nov 24 2018

A295887 Filter sequence combining A003557(n) and A173557(n); the restricted growth sequence transform of A291756.

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 5, 6, 7, 4, 8, 9, 10, 5, 11, 12, 13, 7, 14, 15, 10, 8, 16, 17, 18, 10, 19, 20, 21, 11, 22, 23, 24, 13, 25, 26, 27, 14, 25, 28, 29, 10, 30, 31, 32, 16, 33, 34, 35, 18, 36, 37, 38, 19, 29, 39, 27, 21, 40, 41, 42, 22, 43, 44, 45, 24, 46, 47, 48, 25, 49, 50, 51, 27, 52, 53, 42, 25, 54, 55, 56, 29, 57, 37, 58, 30, 59, 60, 61, 32, 51, 62, 42, 33, 51
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2017

Keywords

Comments

First define function f(n) = (1/2)*(2 + ((A003557(n) + A173557(n))^2) - A003557(n) - 3*A173557(n)), or in short, f(n) = P(A003557(n), A173557(n)), where P(n,k) is triangular table sequence A000027 used as an injective N x N -> N pairing function. Then apply the restricted growth sequence transform to the sequence f(1), f(2), f(3), ... See the example-section.
This is also the restricted growth sequence transform of sequence A291756, as A291756(n) = P(A003557(n), A000010(n)), where again P(n,k) is sequence A000027 used as a pairing function. Given either an ordered pair (A003557(n),A000010(n)) or (A003557(n),A173557(n)), the other one can be computed because A000010(n) = A003557(n)*A173557(n).
Note that the exact pairing function P used is not important, as long as it provides an injective mapping N x N -> N. So instead of Cantor's mapping we could as well used bit-interleaving A054238 (Morton code) to pack together A003557(n) and A173557(n), or equally, A000010(n) and A003557(n).

Examples

			The first ten terms of the sequence f(n) = (1/2)*(2 + ((A003557(n) + A173557(n))^2) - A003557(n) - 3*A173557(n)) are 1, 1, 2, 3, 7, 2, 16, 10, 9, 7. When we assign to each newly occurring term the least unused number k so far (starting by giving k=1 for the initial term, this k increases by one for each new distinct term produced by f(n) when n grows), and for each repeated term the same number it was given the previous time (equal to the number it was given for the first time), we obtain 1, 1, 2, 3, 4, 2, 5, 6, 7, 4, the first 10 terms of this sequence. Note how f(10) = 7 gets 4 because when seven occurred for the first time at f(5), it was the 4th distinct new number in that sequence.
This is also true for the sequence A291756 although there the terms are different: 1, 1, 2, 5, 7, 2, 16, 25, 31, 7.
		

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ This function from Michel Marcus, Oct 31 2017
    Anotsubmitted7(n) = (1/2)*(2 + ((A003557(n)+A173557(n))^2) - A003557(n) - 3*A173557(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Anotsubmitted7(n))),"b295887.txt");

A294877 Lexicographically earliest such sequence a that a(i) = a(j) => A003557(i) = A003557(j) and A046523(i) = A046523(j), for all i, j.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 4, 2, 7, 2, 4, 4, 8, 2, 9, 2, 7, 4, 4, 2, 10, 11, 4, 12, 7, 2, 13, 2, 14, 4, 4, 4, 15, 2, 4, 4, 10, 2, 13, 2, 7, 9, 4, 2, 16, 17, 18, 4, 7, 2, 19, 4, 10, 4, 4, 2, 20, 2, 4, 9, 21, 4, 13, 2, 7, 4, 13, 2, 22, 2, 4, 18, 7, 4, 13, 2, 16, 23, 4, 2, 20, 4, 4, 4, 10, 2, 24, 4, 7, 4, 4, 4, 25, 2, 26, 9, 27, 2, 13, 2, 10, 13, 4, 2, 28, 2, 13
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Comments

Restricted growth sequence transform of A291757, which means that this is the lexicographically least sequence a, such that for all i, j: a(i) = a(j) <=> A291757(i) = A291757(j) <=> A003557(i) = A003557(j) and A046523(i) = A046523(j). That this is equal to the definition given in the title follows because any such lexicographically least sequence satisfying relation <=> is also the least sequence satisfying relation => with the same parameters.
Also the restricted growth sequence transform of A294876, Product_{d|n, d>1} prime(gcd(d,n/d)). (This was the original definition).
For all i, j:
A295300(i) = A295300(j) => a(i) = a(j),
A319347(i) = A319347(j) => a(i) = a(j),
a(i) = a(j) => A055155(i) = A055155(j).

Crossrefs

Cf. A000188, A055155, A294897, A295666, A322020 (a few of the matched sequences).

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A294876(n) = { my(m=1); fordiv(n,d,if(d>1, m *= prime(gcd(d,n/d)))); m; };
    v294877 = rgs_transform(vector(up_to,n,A294876(n)));
    A294877(n) = v294877[n];
    
  • PARI
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    v294877 = rgs_transform(vector(up_to,n,[A003557(n),A046523(n)]));
    A294877(n) = v294877[n]; \\ Antti Karttunen, Nov 28 2018

Extensions

Name changed and comments added by Antti Karttunen, Nov 28 2018

A295888 Filter combining prime signature of n (A101296) with Dedekind's psi (A001615).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 41, 42, 43, 44, 45, 46, 42, 47, 48, 49, 42, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 56, 60, 63, 64, 65, 66, 67, 67, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 77
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2017

Keywords

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d)); \\ This function from Charles R Greathouse IV, Sep 09 2014
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    Anotsubmitted8(n) = (1/2)*(2 + ((A046523(n)+A001615(n))^2) - A046523(n) - 3*A001615(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Anotsubmitted8(n))),"b295888.txt");

Formula

Restricted growth sequence transform of function f(n) = (1/2)*(2 + ((A046523(n) + A001615(n))^2) - A046523(n) - 3*A001615(n)), where values A046523(n) and A001615(n) are packed together to a(n) with the 2-argument form of A000027, also known as Cantor pairing-function.

A296090 Filter combining the sum of divisors (A000203) and prime-signature (A101296) of n; restricted growth sequence transform of A286360.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 44, 49, 50, 51, 44, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 57, 61, 64, 65, 66, 67, 68, 69, 57, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 79
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2017

Keywords

Comments

For all i, j:
a(i) = a(j) => A286034(i) = A286034(j).
a(i) = a(j) => A295880(i) = A295880(j).

Crossrefs

Differs from related A295880 for the first time at n=135, where a(135) = 123, while A295880(135) = 104.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A000203(n) = sigma(n);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286360(n) = (1/2)*(2 + ((A046523(n)+A000203(n))^2) - A046523(n) - 3*A000203(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,A286360(n))),"b296090.txt");

A322021 Lexicographically earliest such sequence a that a(i) = a(j) => A046523(i) = A046523(j) and A048250(i) = A048250(j), for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 12, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 26, 42, 43, 44, 45, 18, 42, 46, 47, 22, 42, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 54, 58, 61, 62, 63, 64, 26, 65, 54, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 52, 78, 79, 80, 81, 75, 82, 83, 26
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2018

Keywords

Comments

Restricted growth sequence transform of A291758, which means that this is the lexicographically least sequence a, such that for all i, j: a(i) = a(j) <=> A291758(i) = A291758(j) <=> A046523(i) = A046523(j) and A048250(i) = A048250(j). That this is equal to the definition given in the title follows because any such lexicographically least sequence satisfying relation <=> is also the least sequence satisfying relation => with the same parameters.
For all i, j:
A295300(i) = A295300(j) => a(i) = a(j),
a(i) = a(j) => A304411(i) = A304411(j),
a(i) = a(j) => A304412(i) = A304412(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    v322021 = rgs_transform(vector(up_to, n, [A046523(n), A048250(n)]));
    A322021(n) = v322021[n];

A326199 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A003557(n), A046523(n), A048250(n)] for all other numbers, except f(n) = 0 for odd primes.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 10, 11, 3, 12, 3, 13, 14, 15, 3, 16, 17, 18, 19, 20, 3, 21, 3, 22, 23, 24, 23, 25, 3, 26, 27, 28, 3, 29, 3, 30, 31, 32, 3, 33, 34, 35, 32, 36, 3, 37, 32, 38, 39, 40, 3, 41, 3, 42, 43, 44, 45, 46, 3, 47, 42, 46, 3, 48, 3, 49, 50, 51, 42, 52, 3, 53, 54, 55, 3, 56, 57, 58, 59, 60, 3, 61, 62, 63, 64, 65, 59, 66, 3, 67, 68, 69, 3, 70, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2019

Keywords

Comments

For all i, j:
A295300(i) = A295300(j) => a(i) = a(j),
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A294877(i) = A294877(j).

Crossrefs

Differs from A323401 for the first time at n = 382 where a(382) = 253, while A323401(382) = 140.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    Aux326199(n) = if((n>2)&&isprime(n),0,(1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n)));
    v326199 = rgs_transform(vector(up_to,n,Aux326199(n)));
    A326199(n) = v326199[n];
Showing 1-10 of 14 results. Next