cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A291751 Lexicographically earliest such sequence a that a(i) = a(j) => A003557(i) = A003557(j) and A048250(i) = A048250(j), for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 6, 11, 12, 13, 13, 14, 10, 15, 16, 17, 18, 19, 13, 20, 21, 22, 23, 24, 25, 26, 18, 27, 28, 29, 28, 30, 31, 32, 33, 34, 22, 35, 36, 37, 38, 26, 28, 39, 40, 41, 26, 42, 29, 43, 26, 44, 45, 46, 32, 47, 48, 35, 49, 50, 51, 52, 53, 54, 35, 52, 26, 55, 56, 57, 58, 59, 35, 60, 45, 61, 62, 63, 51, 64, 65, 66, 67, 68, 46, 69, 70, 47, 71
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2017

Keywords

Comments

Restricted growth sequence transform of A291750, which means that this is the lexicographically least sequence a, such that for all i, j: a(i) = a(j) <=> A291750(i) = A291750(j) <=> A003557(i) = A003557(j) and A048250(i) = A048250(j). That this is equal to the definition given in the title follows because any such lexicographically least sequence satisfying relation <=> is also the least sequence satisfying relation => with the same parameters.
Sigma (A000203) and psi (A001615) are functions of this sequence. See comments in A291750 for the reason. For example, to find the value of A001615(n) when we know just a(n), but without knowing n, let m be the least i for which a(i) = a(n); then A001615(n) = A003991(A291750(m)) = A003557(m) * A048250(m).

Crossrefs

Differs from A286603 for the first time at n = 25, where a(25) = 21, while A286603(25) = 14.

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    v291751 = rgs_transform(vector(65537,n,A291750(n)));
    A291751(n) = v291751[n];

Extensions

Name changed and comments added by Antti Karttunen, Nov 24 2018

A295300 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A003557(n), A046523(n), A048250(n)].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 44, 49, 50, 51, 44, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 58, 62, 65, 66, 67, 68, 69, 70, 58, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 80
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2017

Keywords

Comments

Restricted growth sequence transform of A291752.
For all i, j:
a(i) = a(j) => A291751(i) = A291751(j),
a(i) = a(j) => A326199(i) = A326199(j) => A294877(i) = A294877(j),
a(i) = a(j) => A322021(i) = A322021(j),
a(i) = a(j) => A295888(i) = A295888(j),
a(i) = a(j) => A296090(i) = A296090(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    Aux295300(n) = (1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n));
    v295300 = rgs_transform(vector(up_to,n,Aux295300(n)));
    A295300(n) = v295300[n];

Extensions

Name changed and the comments section added by Antti Karttunen, Jul 13 2019

A291757 a(n) = (1/2)*(2 + ((A003557(n)+A046523(n))^2) - A003557(n) - 3*A046523(n)).

Original entry on oeis.org

1, 2, 2, 12, 2, 16, 2, 59, 18, 16, 2, 80, 2, 16, 16, 261, 2, 94, 2, 80, 16, 16, 2, 355, 33, 16, 129, 80, 2, 436, 2, 1097, 16, 16, 16, 826, 2, 16, 16, 355, 2, 436, 2, 80, 94, 16, 2, 1493, 52, 125, 16, 80, 2, 505, 16, 355, 16, 16, 2, 1832, 2, 16, 94, 4497, 16, 436, 2, 80, 16, 436, 2, 3415, 2, 16, 125, 80, 16, 436, 2, 1493, 888, 16, 2, 1832, 16, 16, 16, 355, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 10 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A003557(n)+A046523(n))^2) - A003557(n) - 3*A046523(n)).

Extensions

Name changed by Antti Karttunen, Nov 28 2018

A294876 a(n) = Product_{d|n, d>1} prime(gcd(d,n/d)).

Original entry on oeis.org

1, 2, 2, 6, 2, 8, 2, 18, 10, 8, 2, 72, 2, 8, 8, 126, 2, 200, 2, 72, 8, 8, 2, 648, 22, 8, 50, 72, 2, 128, 2, 882, 8, 8, 8, 23400, 2, 8, 8, 648, 2, 128, 2, 72, 200, 8, 2, 31752, 34, 968, 8, 72, 2, 5000, 8, 648, 8, 8, 2, 10368, 2, 8, 200, 16758, 8, 128, 2, 72, 8, 128, 2, 2737800, 2, 8, 968, 72, 8, 128, 2, 31752, 1150, 8, 2, 10368, 8, 8, 8, 648, 2, 80000, 8, 72
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Crossrefs

Cf. A294877 (rgs-version of this filter).
Cf. also A293442, A293514, A293524.

Programs

  • Mathematica
    A294876[n_] := Product[Prime[GCD[d, n/d]], {d, Rest[Divisors[n]]}];
    Array[A294876, 100] (* Paolo Xausa, Feb 22 2024 *)
  • PARI
    A294876(n) = { my(m=1); fordiv(n,d,if(d>1, m *= prime(gcd(d,n/d)))); m; };

Formula

a(n) = Product_{d|n, d>1} A000040(gcd(d,n/d)).
Other identities. For all n >= 1:
1+A007814(a(n)) = A034444(n).
1+A056239(a(n)) = A055155(n).
For n > 1, A061395(a(n)) = A000188(n).

A351260 Lexicographically earliest infinite sequence such that a(i) = a(j) => A003415(i) = A003415(j), A003557(i) = A003557(j) and A046523(i) = A046523(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 42, 2, 43, 2, 44, 45, 46, 47, 48, 2, 49, 50, 51, 2, 52, 2, 53, 54, 55, 47, 56, 2, 57, 58, 59, 2, 60, 41, 61, 62, 63, 2, 64, 37, 65, 66, 67, 68, 69, 2, 70, 71, 72, 2, 73, 2, 74, 56
Offset: 1

Views

Author

Antti Karttunen, Feb 06 2022

Keywords

Comments

Restricted growth sequence transform of the triplet [A003415(n), A003557(n), A046523(n)].
For all i, j >= 1:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A294877(i) = A294877(j),
a(i) = a(j) => A300249(i) = A300249(j),
a(i) = a(j) => A344025(i) = A344025(j).

Crossrefs

Differs from A300235, A305895 and A327931 for the first time at n=105, where a(105) = 56, while A300235(105) = A305895(105) = A327931(105) = 75.
Differs from A300249 for the first time at n=425, where a(425) = 299, while A300249(425) = 198.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    Aux351260(n) = [A003415(n), A003557(n), A046523(n)];
    v351260 = rgs_transform(vector(up_to,n,Aux351260(n)));
    A351260(n) = v351260[n];

A322021 Lexicographically earliest such sequence a that a(i) = a(j) => A046523(i) = A046523(j) and A048250(i) = A048250(j), for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 12, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 26, 42, 43, 44, 45, 18, 42, 46, 47, 22, 42, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 54, 58, 61, 62, 63, 64, 26, 65, 54, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 52, 78, 79, 80, 81, 75, 82, 83, 26
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2018

Keywords

Comments

Restricted growth sequence transform of A291758, which means that this is the lexicographically least sequence a, such that for all i, j: a(i) = a(j) <=> A291758(i) = A291758(j) <=> A046523(i) = A046523(j) and A048250(i) = A048250(j). That this is equal to the definition given in the title follows because any such lexicographically least sequence satisfying relation <=> is also the least sequence satisfying relation => with the same parameters.
For all i, j:
A295300(i) = A295300(j) => a(i) = a(j),
a(i) = a(j) => A304411(i) = A304411(j),
a(i) = a(j) => A304412(i) = A304412(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    v322021 = rgs_transform(vector(up_to, n, [A046523(n), A048250(n)]));
    A322021(n) = v322021[n];

A326199 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A003557(n), A046523(n), A048250(n)] for all other numbers, except f(n) = 0 for odd primes.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 10, 11, 3, 12, 3, 13, 14, 15, 3, 16, 17, 18, 19, 20, 3, 21, 3, 22, 23, 24, 23, 25, 3, 26, 27, 28, 3, 29, 3, 30, 31, 32, 3, 33, 34, 35, 32, 36, 3, 37, 32, 38, 39, 40, 3, 41, 3, 42, 43, 44, 45, 46, 3, 47, 42, 46, 3, 48, 3, 49, 50, 51, 42, 52, 3, 53, 54, 55, 3, 56, 57, 58, 59, 60, 3, 61, 62, 63, 64, 65, 59, 66, 3, 67, 68, 69, 3, 70, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2019

Keywords

Comments

For all i, j:
A295300(i) = A295300(j) => a(i) = a(j),
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A294877(i) = A294877(j).

Crossrefs

Differs from A323401 for the first time at n = 382 where a(382) = 253, while A323401(382) = 140.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    Aux326199(n) = if((n>2)&&isprime(n),0,(1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n)));
    v326199 = rgs_transform(vector(up_to,n,Aux326199(n)));
    A326199(n) = v326199[n];
Showing 1-7 of 7 results.