cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A293514 a(n) = Product_{d|n, d>1} prime(A286561(n,d)), where A286561(n,d) gives the highest exponent of d dividing n.

Original entry on oeis.org

1, 2, 2, 6, 2, 8, 2, 20, 6, 8, 2, 48, 2, 8, 8, 84, 2, 48, 2, 48, 8, 8, 2, 320, 6, 8, 20, 48, 2, 128, 2, 264, 8, 8, 8, 864, 2, 8, 8, 320, 2, 128, 2, 48, 48, 8, 2, 2688, 6, 48, 8, 48, 2, 320, 8, 320, 8, 8, 2, 3072, 2, 8, 48, 1560, 8, 128, 2, 48, 8, 128, 2, 11520, 2, 8, 48, 48, 8, 128, 2, 2688, 84, 8, 2, 3072, 8, 8, 8, 320
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Examples

			For n = 24, its divisors larger than one are: 2, 3, 4, 6, 8, 12, 24. Only 2 has valuation > 1, namely A286561(24,2) = 3 (as 2^3 divides 24), while the other six have valuation 1. Thus a(24) = prime(1)^6 * prime(3) = 64*5 = 320.
For n = 64, its divisors larger than one are: 2, 4, 8, 16, 32, 64. We see that 2^6 = 4^3 = 8^2 = 64, while valuation of the last three 16, 32 and 64 is 1. Thus a(64) = prime(1)^3 * prime(2) * prime(3) * prime(6) = 2^3 * 3 * 5 * 13 = 1560.
		

Crossrefs

Programs

  • PARI
    A293514(n) = { my(m=1); fordiv(n,d,if(d>1, m *= prime(valuation(n,d)))); m; };

Formula

a(n) = Product_{d|n, d>1} A000040(A286561(n,d)).
Other identities. For all n >= 1:
A001222(a(n)) = A032741(n).
A007814(a(n)) = A056595(n) [See A046951.]
1+A056239(a(n)) = A169594(n).
A064989(a(n)) = A293515(n).

A294877 Lexicographically earliest such sequence a that a(i) = a(j) => A003557(i) = A003557(j) and A046523(i) = A046523(j), for all i, j.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 4, 2, 7, 2, 4, 4, 8, 2, 9, 2, 7, 4, 4, 2, 10, 11, 4, 12, 7, 2, 13, 2, 14, 4, 4, 4, 15, 2, 4, 4, 10, 2, 13, 2, 7, 9, 4, 2, 16, 17, 18, 4, 7, 2, 19, 4, 10, 4, 4, 2, 20, 2, 4, 9, 21, 4, 13, 2, 7, 4, 13, 2, 22, 2, 4, 18, 7, 4, 13, 2, 16, 23, 4, 2, 20, 4, 4, 4, 10, 2, 24, 4, 7, 4, 4, 4, 25, 2, 26, 9, 27, 2, 13, 2, 10, 13, 4, 2, 28, 2, 13
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Comments

Restricted growth sequence transform of A291757, which means that this is the lexicographically least sequence a, such that for all i, j: a(i) = a(j) <=> A291757(i) = A291757(j) <=> A003557(i) = A003557(j) and A046523(i) = A046523(j). That this is equal to the definition given in the title follows because any such lexicographically least sequence satisfying relation <=> is also the least sequence satisfying relation => with the same parameters.
Also the restricted growth sequence transform of A294876, Product_{d|n, d>1} prime(gcd(d,n/d)). (This was the original definition).
For all i, j:
A295300(i) = A295300(j) => a(i) = a(j),
A319347(i) = A319347(j) => a(i) = a(j),
a(i) = a(j) => A055155(i) = A055155(j).

Crossrefs

Cf. A000188, A055155, A294897, A295666, A322020 (a few of the matched sequences).

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A294876(n) = { my(m=1); fordiv(n,d,if(d>1, m *= prime(gcd(d,n/d)))); m; };
    v294877 = rgs_transform(vector(up_to,n,A294876(n)));
    A294877(n) = v294877[n];
    
  • PARI
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    v294877 = rgs_transform(vector(up_to,n,[A003557(n),A046523(n)]));
    A294877(n) = v294877[n]; \\ Antti Karttunen, Nov 28 2018

Extensions

Name changed and comments added by Antti Karttunen, Nov 28 2018

A295666 a(n) = Product_{d|n, gcd(d,n/d) is prime} gcd(d,n/d).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 4, 1, 1, 1, 4, 1, 9, 1, 4, 1, 1, 1, 16, 5, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 1, 16, 1, 1, 1, 4, 9, 1, 1, 16, 7, 25, 1, 4, 1, 81, 1, 16, 1, 1, 1, 16, 1, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 144, 1, 1, 25, 4, 1, 1, 1, 16, 9, 1, 1, 16, 1, 1, 1, 16, 1, 81, 1, 4, 1, 1, 1, 16, 1, 49, 9, 100, 1, 1, 1, 16, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2017

Keywords

Examples

			For n = 12, with divisors 1, 2, 3, 4, 6, 12, we select from the sequence gcd(1,12/1), gcd(2,12/2), gcd(3,12/3), gcd(4,12/4), gcd(6,12/6), gcd(12,12/12) = 1, 2, 1, 1, 2, 1 only those that are primes, namely the two 2's, and form their product, thus a(12) = 2*2 = 4.
For n = 100, with divisors 1, 2, 4, 5, 10, 20, 25, 50, 100, we select from the sequence gcd(1,100/1), gcd(2,100/2), gcd(4,100/4), gcd(5,100/5), gcd(10,100/10), gcd(20,100/20), gcd(25,100/25), gcd(50,100/50), gcd(100,100/100) = 1, 2, 1, 5, 10, 5, 1, 2, 1, only those that are primes, namely 2, 5, 5 and 2, thus a(100) = 2*5*5*2 = 100.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Product[GCD[i,n/i]^Boole[PrimeQ[GCD[i,n/i]]],{i,Divisors[n]}]; Array[a,105] (* Stefano Spezia, Feb 20 2024 *)
  • PARI
    A295666(n) = { my(m=1,p); fordiv(n, d, p = gcd(d, n/d); if(isprime(p), m *= p)); m; };

Formula

a(n) = Product_{d|n} gcd(d,n/d)^A010051(gcd(d,n/d)).
a(n) = A295665(A294876(n)).
Other identities. For all n >= 1:
A001221(a(n)) = A056170(n) = A001221(A003557(n)).

A294895 a(n) = Product_{d|n, gcd(d,n/d)>1} prime(gcd(d,n/d)-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 4, 1, 1, 1, 20, 1, 9, 1, 4, 1, 1, 1, 16, 7, 1, 9, 4, 1, 1, 1, 100, 1, 1, 1, 396, 1, 1, 1, 16, 1, 1, 1, 4, 9, 1, 1, 400, 13, 49, 1, 4, 1, 81, 1, 16, 1, 1, 1, 16, 1, 1, 9, 1700, 1, 1, 1, 4, 1, 1, 1, 17424, 1, 1, 49, 4, 1, 1, 1, 400, 171, 1, 1, 16, 1, 1, 1, 16, 1, 81, 1, 4, 1, 1, 1, 10000, 1, 169, 9, 4508, 1, 1, 1, 16, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2017

Keywords

Comments

For all i, j: a(i) = a(j) => A294897(i) = A294897(j).

Crossrefs

Cf. A005117 (the positions of ones).

Programs

  • Mathematica
    A294895[n_] := Times @@ Prime[Select[Map[GCD[#, n/#] &, Divisors[n]], #>1 &] - 1];
    Array[A294895, 100] (* Paolo Xausa, Feb 22 2024 *)
  • PARI
    A294895(n) = { my(m=1); fordiv(n,d,if(gcd(d,n/d)>1, m *= prime(gcd(d,n/d)-1))); m; };

Formula

a(n) = Product_{d|n} A008578(gcd(d,n/d)).
a(n) = A064989(A294876(n)).
For n >= 1, A001222(a(n)) = A048105(n).
For n > 1, 1+A061395(a(n)) = A000188(n).

A295665 Fully multiplicative with a(prime(m)) = prime(k) when m = prime(k), and a(prime(m)) = 1 when m is not a prime.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 1, 4, 3, 5, 2, 1, 1, 6, 1, 7, 4, 1, 3, 2, 5, 1, 2, 9, 1, 8, 1, 1, 6, 11, 1, 10, 7, 3, 4, 1, 1, 2, 3, 13, 2, 1, 5, 12, 1, 1, 2, 1, 9, 14, 1, 1, 8, 15, 1, 2, 1, 17, 6, 1, 11, 4, 1, 3, 10, 19, 7, 2, 3, 1, 4, 1, 1, 18, 1, 5, 2, 1, 3, 16, 13, 23, 2, 21, 1, 2, 5, 1, 12, 1, 1, 22, 1, 3, 2, 1, 1, 20, 9, 1, 14, 1, 1, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2017

Keywords

Comments

The number of applications to reach 1 is A322027(n). Positions of first appearances are A076610. - Gus Wiseman, Jan 17 2020

Examples

			For n = 360 = 2^3 * 3^2 * 5 = prime(1)^3 * prime(2)^2 * prime(3), 1 is not a prime, but 2 and 3 are, thus a(360) = 2^2 * 3 = 12.
		

Crossrefs

Cf. also A003963, A257538.
Positions of 1's are A320628.
Positions of terms > 1 are A331386.
Primes of prime index are A006450.
Primes of nonprime index are A007821.
Products of primes of prime index are A076610.
Products of primes of nonprime index are A320628.
The number of prime prime indices is A257994.
The number of nonprime prime indices is A330944.
Numbers whose prime indices are not all prime are A330945.

Programs

  • Mathematica
    Table[Times@@Cases[FactorInteger[n],{p_?(PrimeQ[PrimePi[#]]&),k_}:>PrimePi[p]^k],{n,40}] (* Gus Wiseman, Jan 17 2020 *)
  • Scheme
    (definec (A295665 n) (if (= 1 n) 1 (let ((k (A055396 n))) (* (if (zero? (A010051 k)) 1 k) (A295665 (A032742 n))))))

Formula

Multiplicative with a(p^e) = A000720(p)^(e*A010051(A000720(p))).
a(1) = 1; for n > 1, if A055396(n) is a prime, then a(n) = A055396(n) * a(A032742(n)), otherwise a(n) = a(A032742(n)).
Other identities. For all n >= 1:
a(A006450(n)) = A000040(n).
a(A007097(n)) = A007097(n-1).
a(A294876(n)) = A295666(n).

A322020 a(n) = Product_{d|n, gcd(d,n/d) is a prime power} gcd(d,n/d).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 16, 5, 1, 9, 4, 1, 1, 1, 64, 1, 1, 1, 36, 1, 1, 1, 16, 1, 1, 1, 4, 9, 1, 1, 256, 7, 25, 1, 4, 1, 81, 1, 16, 1, 1, 1, 16, 1, 1, 9, 512, 1, 1, 1, 4, 1, 1, 1, 144, 1, 1, 25, 4, 1, 1, 1, 256, 81, 1, 1, 16, 1, 1, 1, 16, 1, 81, 1, 4, 1, 1, 1, 4096, 1, 49, 9, 100, 1, 1, 1, 16, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 28 2018

Keywords

Crossrefs

Programs

  • PARI
    A322020(n) = { my(m=1,p); fordiv(n, d, p = gcd(d, n/d); if(isprimepower(p), m *= p)); m; };

Formula

a(n) = Product_{d|n} gcd(d,n/d)^A069513(gcd(d,n/d)).
Showing 1-6 of 6 results.