cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A296204 Numbers k such that Product_{d|k, gcd(d,k/d) is prime} gcd(d,k/d) = k; the fixed points of A295666.

Original entry on oeis.org

1, 36, 100, 144, 196, 225, 324, 400, 441, 484, 676, 784, 1089, 1156, 1225, 1296, 1444, 1521, 1936, 2025, 2116, 2500, 2601, 2704, 3025, 3249, 3364, 3844, 3969, 4225, 4624, 4761, 5476, 5625, 5776, 5929, 6724, 7225, 7396, 7569, 8281, 8464, 8649, 8836, 9025, 9604, 9801, 10000, 11236, 12321, 13225, 13456, 13689, 13924, 14161
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2017

Keywords

Crossrefs

Cf. A295666, A296205 (the square roots).

Programs

  • Mathematica
    a295666[n_]:=Product[GCD[i,n/i]^Boole[PrimeQ[GCD[i,n/i]]],{i,Divisors[n]}]; Select[Range[14500], a295666[#]==# &] (* Stefano Spezia, Feb 20 2024 *)

A056170 Number of non-unitary prime divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Labos Elemer, Jul 27 2000

Keywords

Comments

A prime factor of n is unitary iff its exponent is 1 in the prime factorization of n. (Of course for any prime p, GCD(p, n/p) is either 1 or p. For a unitary prime factor it must be 1.)
Number of squared primes dividing n. - Reinhard Zumkeller, May 18 2002
a(A005117(n)) = 0; a(A013929(n)) > 0; a(A190641(n)) = 1. - Reinhard Zumkeller, Dec 29 2012
First differences of A013940. - Jason Kimberley, Feb 01 2017
Number of exponents larger than 1 in the prime factorization of n. - Antti Karttunen, Nov 28 2017

Crossrefs

Programs

Formula

Additive with a(p^e) = 0 if e = 1, 1 otherwise.
G.f.: Sum_{k>=1} x^(prime(k)^2)/(1 - x^(prime(k)^2)). - Ilya Gutkovskiy, Jan 01 2017
a(n) = log_2(A000005(A071773(n))). - observed by Velin Yanev, Aug 20 2017, confirmed by Antti Karttunen, Nov 28 2017
From Antti Karttunen, Nov 28 2017: (Start)
a(n) = A001221(n) - A056169(n).
a(n) = omega(A000188(n)) = omega(A003557(n)) = omega(A057521(n)) = omega(A295666(n)), where omega = A001221.
For all n >= 1 it holds that:
a(A003557(n)) = A295659(n).
a(n) >= A162641(n).
(End)
Dirichlet g.f.: primezeta(2s)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Sum_{p prime} 1/p^2 = 0.452247... (A085548). - Amiram Eldar, Nov 01 2020
a(n) = A275812(n) - A046660(n). - Amiram Eldar, Jan 09 2024

Extensions

Minor edits by Franklin T. Adams-Watters, Mar 23 2011

A294877 Lexicographically earliest such sequence a that a(i) = a(j) => A003557(i) = A003557(j) and A046523(i) = A046523(j), for all i, j.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 4, 2, 7, 2, 4, 4, 8, 2, 9, 2, 7, 4, 4, 2, 10, 11, 4, 12, 7, 2, 13, 2, 14, 4, 4, 4, 15, 2, 4, 4, 10, 2, 13, 2, 7, 9, 4, 2, 16, 17, 18, 4, 7, 2, 19, 4, 10, 4, 4, 2, 20, 2, 4, 9, 21, 4, 13, 2, 7, 4, 13, 2, 22, 2, 4, 18, 7, 4, 13, 2, 16, 23, 4, 2, 20, 4, 4, 4, 10, 2, 24, 4, 7, 4, 4, 4, 25, 2, 26, 9, 27, 2, 13, 2, 10, 13, 4, 2, 28, 2, 13
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Comments

Restricted growth sequence transform of A291757, which means that this is the lexicographically least sequence a, such that for all i, j: a(i) = a(j) <=> A291757(i) = A291757(j) <=> A003557(i) = A003557(j) and A046523(i) = A046523(j). That this is equal to the definition given in the title follows because any such lexicographically least sequence satisfying relation <=> is also the least sequence satisfying relation => with the same parameters.
Also the restricted growth sequence transform of A294876, Product_{d|n, d>1} prime(gcd(d,n/d)). (This was the original definition).
For all i, j:
A295300(i) = A295300(j) => a(i) = a(j),
A319347(i) = A319347(j) => a(i) = a(j),
a(i) = a(j) => A055155(i) = A055155(j).

Crossrefs

Cf. A000188, A055155, A294897, A295666, A322020 (a few of the matched sequences).

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A294876(n) = { my(m=1); fordiv(n,d,if(d>1, m *= prime(gcd(d,n/d)))); m; };
    v294877 = rgs_transform(vector(up_to,n,A294876(n)));
    A294877(n) = v294877[n];
    
  • PARI
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    v294877 = rgs_transform(vector(up_to,n,[A003557(n),A046523(n)]));
    A294877(n) = v294877[n]; \\ Antti Karttunen, Nov 28 2018

Extensions

Name changed and comments added by Antti Karttunen, Nov 28 2018

A295665 Fully multiplicative with a(prime(m)) = prime(k) when m = prime(k), and a(prime(m)) = 1 when m is not a prime.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 1, 4, 3, 5, 2, 1, 1, 6, 1, 7, 4, 1, 3, 2, 5, 1, 2, 9, 1, 8, 1, 1, 6, 11, 1, 10, 7, 3, 4, 1, 1, 2, 3, 13, 2, 1, 5, 12, 1, 1, 2, 1, 9, 14, 1, 1, 8, 15, 1, 2, 1, 17, 6, 1, 11, 4, 1, 3, 10, 19, 7, 2, 3, 1, 4, 1, 1, 18, 1, 5, 2, 1, 3, 16, 13, 23, 2, 21, 1, 2, 5, 1, 12, 1, 1, 22, 1, 3, 2, 1, 1, 20, 9, 1, 14, 1, 1, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2017

Keywords

Comments

The number of applications to reach 1 is A322027(n). Positions of first appearances are A076610. - Gus Wiseman, Jan 17 2020

Examples

			For n = 360 = 2^3 * 3^2 * 5 = prime(1)^3 * prime(2)^2 * prime(3), 1 is not a prime, but 2 and 3 are, thus a(360) = 2^2 * 3 = 12.
		

Crossrefs

Cf. also A003963, A257538.
Positions of 1's are A320628.
Positions of terms > 1 are A331386.
Primes of prime index are A006450.
Primes of nonprime index are A007821.
Products of primes of prime index are A076610.
Products of primes of nonprime index are A320628.
The number of prime prime indices is A257994.
The number of nonprime prime indices is A330944.
Numbers whose prime indices are not all prime are A330945.

Programs

  • Mathematica
    Table[Times@@Cases[FactorInteger[n],{p_?(PrimeQ[PrimePi[#]]&),k_}:>PrimePi[p]^k],{n,40}] (* Gus Wiseman, Jan 17 2020 *)
  • Scheme
    (definec (A295665 n) (if (= 1 n) 1 (let ((k (A055396 n))) (* (if (zero? (A010051 k)) 1 k) (A295665 (A032742 n))))))

Formula

Multiplicative with a(p^e) = A000720(p)^(e*A010051(A000720(p))).
a(1) = 1; for n > 1, if A055396(n) is a prime, then a(n) = A055396(n) * a(A032742(n)), otherwise a(n) = a(A032742(n)).
Other identities. For all n >= 1:
a(A006450(n)) = A000040(n).
a(A007097(n)) = A007097(n-1).
a(A294876(n)) = A295666(n).

A296205 Numbers k such that Product_{d|k^2, gcd(d,k^2/d) is prime} gcd(d,k^2/d) = k^2.

Original entry on oeis.org

1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 26, 28, 33, 34, 35, 36, 38, 39, 44, 45, 46, 50, 51, 52, 55, 57, 58, 62, 63, 65, 68, 69, 74, 75, 76, 77, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 100, 106, 111, 115, 116, 117, 118, 119, 122, 123, 124, 129, 133, 134, 141, 142, 143, 145, 146, 147, 148, 153, 155, 158, 159, 161
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2017

Keywords

Comments

Except for a(1) = 1, these appear to be cubefree numbers with two distinct prime factors, or Heinz numbers of integer partitions with two distinct parts, none appearing more than twice. The enumeration of these partitions by sum is given by A307370. Equivalently, except for a(1) = 1, this sequence is the intersection of A004709 and A007774. - Gus Wiseman, Jul 03 2019

Crossrefs

Cf. A006881, A054753, A085986 (seem to be subsequences).

Programs

  • Maple
    filter:= proc(k) local d,r,v;
       r:= 1;
       for d in numtheory:-divisors(k^2) do
         v:= igcd(d,k^2/d);
         if isprime(v) then r:= r*v fi
       od;
       r = k^2
    end proc:
    select(filter, [$1..200]); # Robert Israel, Feb 20 2024

Formula

a(n) = A000196(A296204(n)).

A322020 a(n) = Product_{d|n, gcd(d,n/d) is a prime power} gcd(d,n/d).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 16, 5, 1, 9, 4, 1, 1, 1, 64, 1, 1, 1, 36, 1, 1, 1, 16, 1, 1, 1, 4, 9, 1, 1, 256, 7, 25, 1, 4, 1, 81, 1, 16, 1, 1, 1, 16, 1, 1, 9, 512, 1, 1, 1, 4, 1, 1, 1, 144, 1, 1, 25, 4, 1, 1, 1, 256, 81, 1, 1, 16, 1, 1, 1, 16, 1, 81, 1, 4, 1, 1, 1, 4096, 1, 49, 9, 100, 1, 1, 1, 16, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 28 2018

Keywords

Crossrefs

Programs

  • PARI
    A322020(n) = { my(m=1,p); fordiv(n, d, p = gcd(d, n/d); if(isprimepower(p), m *= p)); m; };

Formula

a(n) = Product_{d|n} gcd(d,n/d)^A069513(gcd(d,n/d)).
Showing 1-6 of 6 results.