A296205 Numbers k such that Product_{d|k^2, gcd(d,k^2/d) is prime} gcd(d,k^2/d) = k^2.
1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 26, 28, 33, 34, 35, 36, 38, 39, 44, 45, 46, 50, 51, 52, 55, 57, 58, 62, 63, 65, 68, 69, 74, 75, 76, 77, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 100, 106, 111, 115, 116, 117, 118, 119, 122, 123, 124, 129, 133, 134, 141, 142, 143, 145, 146, 147, 148, 153, 155, 158, 159, 161
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(k) local d,r,v; r:= 1; for d in numtheory:-divisors(k^2) do v:= igcd(d,k^2/d); if isprime(v) then r:= r*v fi od; r = k^2 end proc: select(filter, [$1..200]); # Robert Israel, Feb 20 2024
Comments