cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A344025 Lexicographically earliest infinite sequence such that a(i) = a(j) => A003415(i) = A003415(j) and A003557(i) = A003557(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 21, 2, 42, 2, 43, 44, 45, 46, 47, 2, 48, 49, 50, 2, 51, 2, 52, 53, 54, 46, 55, 2, 56, 57, 58, 2, 59, 41, 60, 61, 62, 2, 63, 37, 64
Offset: 1

Views

Author

Antti Karttunen, May 07 2021

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A003415(n), A003557(n)], where A003415(n) is the arithmetic derivative of n, and A003557(n) is n divided by its largest squarefree divisor.
For all i, j:
parent(i) = parent(j) => a(i) = a(j),
a(i) = a(j) => A342001(i) = A342001(j),
a(i) = a(j) => A369051(i) = A369051(j) => A085731(i) = A085731(j).
Where "parent" can be any of the sequences A351236, A351260, A353520, A353521, A369050, for example.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    Aux344025(n) = [A003415(n), A003557(n)];
    v344025 = rgs_transform(vector(up_to, n, Aux344025(n)));
    A344025(n) = v344025[n];

A351236 Lexicographically earliest infinite sequence such that a(i) = a(j) => A344025(i) = A344025(j) and A351085(i) = A351085(j) for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 21, 2, 42, 2, 43, 44, 45, 46, 47, 2, 48, 49, 50, 2, 51, 2, 52, 53, 54, 46, 55, 2, 56, 57, 58, 2, 59, 41, 60, 61, 62, 2, 63, 64, 65
Offset: 1

Views

Author

Antti Karttunen, Feb 06 2022

Keywords

Comments

Restricted growth sequence transform of the 4-tuple [A003415(n), A003557(n), A327858(n), A345000(n)].
Question: If an image-analysis algorithm were to classify the scatter plot of this sequence, where it would cluster it? Nearer to A344025 than to A351085?

Crossrefs

Differs from A344025 for the first time at n=91, where a(91) = 64, while A344025(91) = 37.
Cf. also A305800, A351235, A351260.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327858(n) = gcd(A003415(n),A276086(n));
    A345000(n) = gcd(A003415(n),A003415(A276086(n)));
    Aux351236(n) = [A003415(n), A003557(n), A327858(n), A345000(n)];
    v351236 = rgs_transform(vector(up_to, n, Aux351236(n)));
    A351236(n) = v351236[n];

A353520 Lexicographically earliest infinite sequence such that a(i) = a(j) => A003415(i) = A003415(j), A003557(i) = A003557(j) and A053669(i) = A053669(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 29, 30, 3, 31, 3, 32, 33, 34, 3, 35, 36, 37, 38, 39, 3, 40, 29, 41, 42, 43, 3, 44, 3, 45, 46, 47, 48, 49, 3, 50, 51, 52, 3, 53, 3, 54, 55, 56, 48, 57, 3, 58, 59, 60, 3, 61, 42, 62, 63, 64, 3, 65, 38
Offset: 1

Views

Author

Antti Karttunen, Apr 25 2022

Keywords

Comments

Restricted growth sequence transform of the triplet [A003415(n), A003557(n), A053669(n)].
For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A344025(i) = A344025(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A053669(n) = forprime(p=2, , if(n%p, return(p))); \\ From A053669
    Aux353520(n) = [A003415(n), A003557(n), A053669(n)];
    v353520 = rgs_transform(vector(up_to,n,Aux353520(n)));
    A353520(n) = v353520[n];

A369050 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(1) = 1, and for n>1, f(n) = [A003415(n), A369049(n)], for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 42, 2, 43, 2, 44, 45, 46, 47, 48, 2, 49, 50, 51, 2, 52, 2, 53, 54, 55, 56, 57, 2, 58, 59, 60, 2, 61, 62, 63, 64, 65, 2, 66, 37
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2024

Keywords

Comments

Restricted growth sequence transform of the function f defined as: f(1) = 1, and for n>1, f(n) = [A003415(n), A369049(n)].
For all i, j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A344025(i) = A344025(j) => A369051(i) = A369051(j).

Crossrefs

Differs from A351260 for the first time at n=77, where a(77) = 56, while A351260(77) = 47.
Differs from A300833 for the first time at n=91, where a(91) = 37, while A300833(91) = 67.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A369049(n) = (n % A003415(n));
    Aux369050(n) = if(1==n,1,[A003415(n), A369049(n)]);
    v369050 = rgs_transform(vector(up_to, n, Aux369050(n)));
    A369050(n) = v369050[n];

A353521 Lexicographically earliest infinite sequence such that a(i) = a(j) => A003415(i) = A003415(j), A003557(i) = A003557(j) and A000035(i) = A000035(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 29, 30, 3, 31, 3, 32, 33, 34, 3, 35, 36, 37, 38, 39, 3, 40, 29, 41, 42, 22, 3, 43, 3, 44, 45, 46, 47, 48, 3, 49, 50, 51, 3, 52, 3, 53, 54, 55, 47, 56, 3, 57, 58, 59, 3, 60, 42, 61, 62, 63, 3, 64, 38
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2022

Keywords

Comments

Restricted growth sequence transform of the triplet [A003415(n), A003557(n), A000035(n)].
For all i, j:
A305801(i) = A305801(j) => A353520(i) = A353520(j) => a(i) = a(j),
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A344025(i) = A344025(j),
a(i) = a(j) => A353522(i) = A353522(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000035(n) = (n%2);
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    Aux353521(n) = [A003415(n), A003557(n), A000035(n)];
    v353521 = rgs_transform(vector(up_to,n,Aux353521(n)));
    A353521(n) = v353521[n];

A353560 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j), A001065(i) = A001065(j) and A051953(i) = A051953(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 42, 2, 43, 2, 44, 45, 46, 47, 48, 2, 49, 50, 51, 2, 52, 2, 53, 54, 55, 47, 56, 2, 57, 58, 59, 2, 60, 41, 61, 62, 63, 2, 64, 37
Offset: 1

Views

Author

Antti Karttunen, Apr 29 2022

Keywords

Comments

Restricted growth sequence transform of the triplet [A046523(n), A001065(n), A051953(n)].
For all i,j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A300232(i) = A300232(j), [Combining A046523 and A051953]
a(i) = a(j) => A300235(i) = A300235(j), [Combining A046523 and A001065]
a(i) = a(j) => A305895(i) = A305895(j), [Combining A001065 and A051953]
a(i) = a(j) => A353276(i) = A353276(j). [Needs all three components]

Crossrefs

Differs from A300235 for the first time at n=153, where a(153) = 110, while A300235(153) = 106.
Differs from A305895 for the first time at n=3283, where a(3283) = 2502, while A305895(3283) = 1845.
Differs from A327931 for the first time at n=4433, where a(4433) = 2950, while A327931(4433) = 3393.
Differs from A300249 and from A351260 for the first time at n=105, where a(105) = 75, while A300249(105) = A351260(105) = 56.

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A001065(n) = (sigma(n)-n);
    A051953(n) = (n-eulerphi(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    Aux353560(n) = [A046523(n), A001065(n), A051953(n)];
    v353560 = rgs_transform(vector(up_to,n,Aux353560(n)));
    A353560(n) = v353560[n];
Showing 1-6 of 6 results.