cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 56 results. Next

A305801 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = 0 if n is an odd prime, with f(n) = n for all other n.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 29, 30, 3, 31, 3, 32, 33, 34, 3, 35, 36, 37, 38, 39, 3, 40, 41, 42, 43, 44, 3, 45, 3, 46, 47, 48, 49, 50, 3, 51, 52, 53, 3, 54, 3, 55, 56, 57, 58, 59, 3, 60, 61, 62, 3, 63, 64, 65, 66, 67, 3, 68, 69, 70, 71, 72, 73, 74, 3, 75, 76, 77, 3, 78, 3, 79, 80
Offset: 1

Views

Author

Antti Karttunen, Jun 14 2018

Keywords

Comments

The original name was: "Filter sequence for a(odd prime) = constant sequences", which stemmed from the fact that for all i, j, a(i) = a(j) => b(i) = b(j) for any sequence b that obtains a constant value for all odd primes A065091.
For example, we have for all i, j:
a(i) = a(j) => A305800(i) = A305800(j),
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A305891(i) = A305891(j) => A291761(i) = A291761(j).
There are several filter sequences "above" this one (meaning that they have finer equivalence class partitioning), for example, we have, for all i, j:
[where odd primes are further distinguished by]
A305900(i) = A305900(j) => a(i) = a(j), [whether p = 3 or > 3]
A319350(i) = A319350(j) => a(i) = a(j), [A007733(p)]
A319704(i) = A319704(j) => a(i) = a(j), [p mod 4]
A319705(i) = A319705(j) => a(i) = a(j), [A286622(p)]
A331304(i) = A331304(j) => a(i) = a(j), [parity of A000720(p)]
A336855(i) = A336855(j) => a(i) = a(j). [distance to the next larger prime]

Crossrefs

Cf. A305900, A319350, A319704, A319705, A331304, A336855 (sequences with finer equivalence class partitioning).
Cf. also A003602, A103391, A295300, A305795, A324400, A331300, A336460 (for similar constructions or similarly useful sequences).

Programs

  • Mathematica
    Array[If[# <= 2, #, If[PrimeQ[#], 3, 2 + # - PrimePi[#]]] &, 105] (* Michael De Vlieger, Oct 18 2021 *)
  • PARI
    A305801(n) = if(n<=2,n,if(isprime(n),3,2+n-primepi(n)));

Formula

a(1) = 1, a(2) = 2; for n > 2, a(n) = 3 for odd primes, and a(n) = 2+n-A000720(n) for composite n.
For n > 2, a(n) = 1 + A305800(n).

Extensions

Name changed and Comment section rewritten by Antti Karttunen, Oct 17 2021

A335915 Fully multiplicative with a(2) = 1, and a(p) = A000265(p-1)*A000265(p+1) = A000265(p^2 - 1), for odd primes p.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 3, 1, 1, 3, 15, 1, 21, 3, 3, 1, 9, 1, 45, 3, 3, 15, 33, 1, 9, 21, 1, 3, 105, 3, 15, 1, 15, 9, 9, 1, 171, 45, 21, 3, 105, 3, 231, 15, 3, 33, 69, 1, 9, 9, 9, 21, 351, 1, 45, 3, 45, 105, 435, 3, 465, 15, 3, 1, 63, 15, 561, 9, 33, 9, 315, 1, 333, 171, 9, 45, 45, 21, 195, 3, 1, 105, 861, 3, 27, 231, 105, 15, 495, 3, 63, 33, 15, 69
Offset: 1

Views

Author

Antti Karttunen, Jul 09 2020

Keywords

Comments

For all i, j: A324400(i) = A324400(j) => a(i) = a(j) => A336118(i) = A336118(j).

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A335915(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]-1)*A000265(f[k,1]+1))^f[k,2])); };

Formula

Completely multiplicative with a(2) = 1, and for odd primes p, a(p) = A000265(p-1)*A000265(p+1).
For all n >= 1, A335904(a(n)) = A336118(n).
For all n >= 0, a(2^n) = a(3^n) = 1, a(5^n) = a(7^n) = 3^n.
a(n) = A336466(n) * A336467(n). - Antti Karttunen, Jan 31 2021

A295300 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A003557(n), A046523(n), A048250(n)].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 44, 49, 50, 51, 44, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 58, 62, 65, 66, 67, 68, 69, 70, 58, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 80
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2017

Keywords

Comments

Restricted growth sequence transform of A291752.
For all i, j:
a(i) = a(j) => A291751(i) = A291751(j),
a(i) = a(j) => A326199(i) = A326199(j) => A294877(i) = A294877(j),
a(i) = a(j) => A322021(i) = A322021(j),
a(i) = a(j) => A295888(i) = A295888(j),
a(i) = a(j) => A296090(i) = A296090(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    Aux295300(n) = (1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n));
    v295300 = rgs_transform(vector(up_to,n,Aux295300(n)));
    A295300(n) = v295300[n];

Extensions

Name changed and the comments section added by Antti Karttunen, Jul 13 2019

A335880 Lexicographically earliest infinite sequence such that a(i) = a(j) => A329697(i) = A329697(j) and A331410(i) = A331410(j) for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 5, 2, 5, 4, 6, 1, 7, 5, 8, 3, 9, 5, 9, 2, 10, 5, 8, 4, 11, 6, 12, 1, 8, 7, 8, 5, 11, 8, 8, 3, 6, 9, 13, 5, 11, 9, 14, 2, 14, 10, 10, 5, 11, 8, 11, 4, 15, 11, 15, 6, 9, 12, 13, 1, 11, 8, 15, 7, 13, 8, 13, 5, 16, 11, 16, 8, 13, 8, 13, 3, 15, 6, 8, 9, 17, 13, 18, 5, 16, 11, 13, 9, 14, 14, 18, 2, 6, 14, 15, 10, 16, 10, 8, 5, 15
Offset: 1

Views

Author

Antti Karttunen, Jun 29 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A329697(n), A331410(n)].
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j),
a(i) = a(j) => A334861(i) = A334861(j),
a(i) = a(j) => A335875(i) = A335875(j),
a(i) = a(j) => A335877(i) = A335877(j),
a(i) = a(j) => A335881(i) = A335881(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A329697(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A329697(f[k,1]-1)))); };
    A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(f[k,1]+1)))); };
    Aux335880(n) = [A329697(n),A331410(n)];
    v335880 = rgs_transform(vector(up_to, n, Aux335880(n)));
    A335880(n) = v335880[n];

A336390 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336467(i) = A336467(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 3, 2, 5, 2, 6, 1, 7, 4, 8, 3, 9, 3, 3, 2, 10, 5, 11, 2, 12, 6, 2, 1, 6, 7, 6, 4, 13, 8, 14, 3, 15, 9, 16, 3, 17, 3, 3, 2, 4, 10, 18, 5, 19, 11, 18, 2, 20, 12, 12, 6, 21, 2, 22, 1, 23, 6, 24, 7, 6, 6, 7, 4, 25, 13, 26, 8, 6, 14, 8, 3, 27, 15, 15, 9, 28, 16, 29, 3, 30, 17, 14, 3, 9, 3, 29, 2, 31, 4, 17, 10, 32, 18, 33, 5, 34
Offset: 1

Views

Author

Antti Karttunen, Aug 10 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A336467(n), A336158(n)].
For all i, j:
A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j),
a(i) = a(j) => A331410(i) = A331410(j),
a(i) = a(j) => A336391(i) = A336391(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); };
    Aux336390(n) = [A336158(n), A336467(n)];
    v336390 = rgs_transform(vector(up_to, n, Aux336390(n)));
    A336390(n) = v336390[n];

A336159 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 6, 4, 7, 1, 3, 5, 6, 3, 8, 6, 9, 2, 10, 6, 11, 4, 9, 7, 12, 1, 13, 3, 14, 5, 15, 6, 16, 3, 15, 8, 17, 6, 18, 9, 19, 2, 10, 10, 20, 6, 17, 11, 21, 4, 16, 9, 22, 7, 19, 12, 23, 1, 13, 13, 6, 3, 8, 14, 9, 5, 15, 15, 18, 6, 24, 16, 19, 3, 25, 15, 17, 8, 26, 17, 27, 6, 17, 18, 28, 9, 27, 19, 29, 2, 6, 10, 30, 10, 17, 20, 22, 6, 31
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278222(n), A336158(n)], i.e., of the ordered pair [A046523(A005940(1+n)), A046523(A000265(n))].
For all i, j: A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    A336158(n) = A046523(A000265(n));
    Aux336159(n) = [A278222(n), A336158(n)];
    v336159 = rgs_transform(vector(up_to, n, Aux336159(n)));
    A336159(n) = v336159[n];

A336471 Lexicographically earliest infinite sequence such that a(i) = a(j) => A329697(i) = A329697(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 3, 2, 3, 3, 5, 1, 2, 4, 6, 2, 7, 3, 6, 2, 4, 3, 8, 3, 6, 5, 6, 1, 7, 2, 7, 4, 6, 6, 7, 2, 3, 7, 9, 3, 10, 6, 9, 2, 11, 4, 5, 3, 6, 8, 7, 3, 12, 6, 9, 5, 6, 6, 13, 1, 7, 7, 9, 2, 12, 7, 9, 4, 6, 6, 10, 6, 12, 7, 9, 2, 14, 3, 6, 7, 5, 9, 12, 3, 6, 10, 12, 6, 12, 9, 12, 2, 3, 11, 13, 4, 6, 5, 6, 3, 15
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A329697(n), A336158(n)].
For all i, j:
A336470(i) = A336470(j) => a(i) = a(j)
a(i) = a(j) => A336396(i) = A336396(j),
a(i) = a(j) => A336469(i) = A336469(j) => A336477(i) = A336477(j).
This sequence has an ability to see where the terms of A003401 are, as they are the indices of zeros in A336469. Specifically, they are numbers k that satisfy the condition A329697(k) = A001221(A336158(k)), i.e., numbers for which A329697(k) is equal to the number of distinct prime divisors of the odd part of k. See also comments in array A334100.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    Aux336471(n) = [A329697(n), A336158(n)];
    v336471 = rgs_transform(vector(up_to, n, Aux336471(n)));
    A336471(n) = v336471[n];

A323889 Lexicographically earliest positive sequence such that a(i) = a(j) => A002487(i) = A002487(j) and A278222(i) = A278222(j), for all i, j >= 0.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 3, 5, 2, 6, 4, 7, 3, 7, 5, 8, 2, 9, 6, 10, 4, 11, 7, 12, 3, 10, 7, 13, 5, 12, 8, 14, 2, 15, 9, 16, 6, 17, 10, 18, 4, 17, 11, 19, 7, 20, 12, 21, 3, 16, 10, 22, 7, 19, 13, 23, 5, 18, 12, 23, 8, 21, 14, 24, 2, 25, 15, 26, 9, 27, 16, 28, 6, 29, 17, 30, 10, 31, 18, 32, 4, 27, 17, 33, 11, 34, 19, 35, 7, 31, 20, 36, 12, 37, 21, 38, 3, 26, 16, 39, 10, 33, 22
Offset: 0

Views

Author

Antti Karttunen, Feb 09 2019

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A002487(n), A278222(n)].

Crossrefs

Cf. also A103391, A278243, A286378, A318311, A323892, A323897 and A324533 for a "deformed variant".

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    Aux323889(n) = [A002487(n), A278222(n)];
    v323889 = rgs_transform(vector(1+up_to,n,Aux323889(n-1)));
    A323889(n) = v323889[1+n];

Formula

a(2^n) = 2 for all n >= 0.

A324401 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j) for all i, j >= 1, where f(n) = -1 if n is an odd prime, f(n) = -2 if n = 2^k, with k > 1, and f(n) = n for all other numbers.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 4, 6, 7, 3, 8, 3, 9, 10, 4, 3, 11, 3, 12, 13, 14, 3, 15, 16, 17, 18, 19, 3, 20, 3, 4, 21, 22, 23, 24, 3, 25, 26, 27, 3, 28, 3, 29, 30, 31, 3, 32, 33, 34, 35, 36, 3, 37, 38, 39, 40, 41, 3, 42, 3, 43, 44, 4, 45, 46, 3, 47, 48, 49, 3, 50, 3, 51, 52, 53, 54, 55, 3, 56, 57, 58, 3, 59, 60, 61, 62, 63, 3, 64, 65, 66, 67, 68, 69, 70, 3, 71, 72, 73, 3, 74, 3, 75, 76
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2019

Keywords

Comments

For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A305976(i) = A305976(j) => A001221(i) = A001221(j),
a(i) = a(j) => A322591(i) = A322591(j),
a(i) = a(j) => A323235(i) = A323235(j),
a(i) = a(j) => A324399(i) = A324399(j),
a(i) = a(j) => A297159(i) = A297159(j).

Crossrefs

Programs

  • PARI
    A000523(n) = if(n<1, 0, #binary(n)-1);
    A324401(n) = if(n<4,n,if(isprime(n),3,if(!bitand(n,n-1),4,4+n-A000523(n)-primepi(n))));
    
  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux324401(n) = if((n>2) && (isprime(n)||!bitand(n,n-1)),-(2-(n%2)),n);
    \\ Equally: Aux324401(n) = if(n<=2,n,if(isprime(n),-1,if(!bitand(n,n-1),-2,n)));
    v324401 = rgs_transform(vector(up_to, n, Aux324401(n)));
    A324401(n) = v324401[n];

Formula

If n <= 2, a(n) = n, for n > 2, if n is an odd prime, a(n) = 3, if n = 2^k, with k >= 2, a(n) = 4, otherwise a(n) = 4 + n - A000523(n) - A000720(n).

A331744 Lexicographically earliest infinite sequence such that a(i) = a(j) => A009194(i) = A009194(j) and A323901(i) = A323901(j) for all i, j.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 5, 1, 6, 7, 8, 9, 3, 10, 11, 1, 12, 13, 14, 7, 15, 16, 17, 18, 19, 7, 17, 20, 6, 21, 22, 1, 23, 24, 25, 6, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 9, 30, 19, 37, 7, 15, 38, 39, 40, 41, 42, 14, 43, 41, 44, 22, 1, 45, 46, 47, 24, 48, 49, 50, 13, 51, 52, 53, 54, 55, 56, 57, 7, 58, 59, 60, 61, 62, 63, 64, 33, 65, 66, 67, 68, 69, 70, 71, 18, 69, 30, 72, 19
Offset: 1

Views

Author

Antti Karttunen, Feb 04 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A009194(n), A323901(n)].

Crossrefs

Programs

  • PARI
    \\ Needs also code from A323901.
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A009194(n) = gcd(n, sigma(n));
    Aux331744(n) = [A009194(n),A323901(n)];
    v331744 = rgs_transform(vector(up_to, n, Aux331744(n)));
    A331744(n) = v331744[n];

Formula

a(2^n) = 1 for all n >= 0.
Showing 1-10 of 56 results. Next