cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A336456 a(n) = A335915(sigma(sigma(n))), where A335915 is a fully multiplicative sequence with a(2) = 1 and a(p) = A000265(p^2 - 1) for odd primes p, with A000265(k) giving the odd part of k.

Original entry on oeis.org

1, 1, 3, 1, 1, 3, 3, 1, 3, 21, 3, 3, 1, 3, 3, 1, 21, 3, 3, 1, 3, 63, 3, 3, 1, 1, 3, 3, 1, 63, 3, 21, 15, 3, 15, 3, 3, 3, 3, 21, 1, 3, 3, 3, 3, 63, 15, 3, 3, 1, 63, 45, 3, 3, 63, 3, 15, 21, 3, 3, 1, 3, 9, 1, 3, 315, 3, 21, 3, 315, 63, 3, 45, 3, 3, 3, 3, 3, 15, 1, 135, 21, 3, 3, 9, 3, 3, 63, 21, 63, 15, 3, 27, 315
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2020

Keywords

Comments

Like A051027, neither this is multiplicative. For example, we have a(3) = 3, a(7) = 3, but a(21) = 3 <> 9. However, for example, a(10) = 21, and a(3*10) = 63.

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A335915(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265((f[k,1]^2)-1)^f[k,2]))); };
    A336456(n) = A335915(sigma(sigma(n)));

Formula

A336455 a(n) = A335915(sigma(n)), where A335915 is a fully multiplicative sequence with a(2) = 1 and a(p) = A000265(p^2 - 1) for odd primes p, with A000265(k) giving the odd part of k.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 21, 1, 1, 3, 3, 1, 1, 15, 1, 21, 3, 3, 1, 1, 1, 3, 15, 3, 3, 3, 3, 1, 1, 3, 1, 1, 1, 63, 45, 3, 3, 3, 3, 1, 15, 3, 21, 1, 1, 15, 45, 15, 1, 9, 1, 3, 1, 3, 3, 3, 3, 3, 15, 1, 21, 63, 3, 1, 9, 3, 1, 1, 1, 63, 171, 45, 15, 9, 1, 3, 3, 15, 225, 3, 3, 3, 1, 15, 3, 3, 3, 21, 3, 3, 1, 1, 3, 3, 9, 45, 21, 45
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A335915(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265((f[k,1]^2)-1)^f[k,2]))); };
    A336455(n) = A335915(sigma(n));
    \\ Alternatively, as:
    A336455(n) =  { my(f=factor(n)); prod(k=1,#f~,A335915(((f[k,1]^(1+f[k,2]))-1)/(f[k,1]-1))); };

Formula

a(n) = A335915(A000203(n)).
Multiplicative with a(p^e) = A335915(1 + p + p^2 + ... + p^e).
a(A000203(n)) = A336456(n).

A336160 Lexicographically earliest infinite sequence such that a(i) = a(j) => A335915(i) = A335915(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 6, 3, 7, 1, 8, 4, 9, 3, 7, 5, 10, 2, 11, 6, 12, 3, 13, 7, 5, 1, 14, 8, 15, 4, 16, 9, 17, 3, 13, 7, 18, 5, 19, 10, 20, 2, 11, 11, 15, 6, 21, 12, 22, 3, 22, 13, 23, 7, 24, 5, 19, 1, 25, 14, 26, 8, 27, 15, 28, 4, 29, 16, 30, 9, 22, 17, 31, 3, 32, 13, 33, 7, 34, 18, 35, 5, 36, 19, 25, 10, 14, 20, 37, 2, 38, 11, 39, 11, 40, 15, 41, 6, 42
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A335915(n), A336158(n)].
For all i, j: A324400(i) = A324400(j) => a(i) = a(j) => A336161(i) = A336161(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    A335915(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]-1)*A000265(f[k,1]+1))^f[k,2])); };
    Aux336160(n) = [A335915(n), A336158(n)];
    v336160 = rgs_transform(vector(up_to, n, Aux336160(n)));
    A336160(n) = v336160[n];

A336461 Numbers k for which A335915(k) = A335915(sigma(k)).

Original entry on oeis.org

1, 2, 3, 6, 20, 28, 40, 56, 60, 84, 120, 135, 160, 168, 176, 189, 224, 270, 304, 378, 480, 496, 528, 585, 672, 819, 912, 1170, 1372, 1488, 1638, 1836, 2156, 2744, 3025, 3672, 3724, 3780, 4116, 4312, 4572, 6050, 6076, 6468, 6525, 7448, 7560, 7956, 8128, 8232, 9075, 9144, 9225, 9261, 10224, 10880, 10976, 11172, 12152, 12936, 13050, 14144
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2020

Keywords

Comments

Numbers k such that A335915(k) = A336455(k).
If terms x and y are present and gcd(x,y) = 1, then x*y is present also. This follows because both A335915 and A336455 are multiplicative sequences.
See also comments in A336464.

Crossrefs

Subsequences: A000396, A005820.
Cf. also A336462, A336463, A336464.

Programs

A336557 Numbers k such that A336456(n) = Product_{p^e|n} A336456(p^e). Here each p^e is the maximal power of prime p that divides k, and A336456(n) = A335915(sigma(sigma(n))).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 29, 31, 32, 36, 37, 38, 39, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 59, 60, 61, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 86, 87, 89, 92, 95, 96, 97, 99, 100, 101, 103, 104, 107, 108, 109, 111, 112
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2020

Keywords

Comments

Numbers at which points A336456 appears to be multiplicative.

Crossrefs

Cf. A336556 (characteristic function), A336558 (complement).
Union of A000961 and A336559.
Union of A336547 and A336560.

A336559 Numbers k, not powers of primes, such that A336456(k) = Product_{p^e|k} A336456(p^e). Here each p^e is the maximal power of prime p that divides k, and A336456(k) = A335915(sigma(sigma(k))).

Original entry on oeis.org

6, 12, 14, 15, 18, 20, 24, 26, 28, 36, 38, 39, 44, 45, 48, 50, 51, 54, 56, 60, 62, 63, 68, 72, 74, 75, 76, 78, 80, 86, 87, 92, 95, 96, 99, 100, 104, 108, 111, 112, 116, 117, 122, 123, 124, 126, 134, 143, 144, 146, 147, 148, 150, 153, 158, 159, 162, 171, 172, 175, 176, 180, 183, 188, 192, 194, 196, 200, 204, 206, 207
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2020

Keywords

Crossrefs

Terms of A336557 without those of A000961.
Cf. A336549 (a subsequence).

Programs

A336155 Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(1+i) = A007814(1+j) and A335915(i) = A335915(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 2, 5, 2, 1, 6, 7, 2, 8, 6, 9, 2, 10, 2, 11, 6, 4, 12, 13, 2, 10, 14, 3, 6, 15, 6, 16, 2, 17, 18, 19, 2, 20, 21, 22, 6, 15, 6, 23, 12, 4, 24, 25, 2, 10, 18, 19, 14, 26, 2, 27, 6, 28, 29, 30, 6, 31, 12, 32, 2, 33, 12, 34, 18, 35, 18, 36, 2, 37, 38, 19, 21, 28, 14, 39, 6, 1, 29, 40, 6, 41, 42, 43, 12, 44, 6, 45, 24, 17, 46, 47, 2, 48, 18, 7, 18, 49, 18, 50, 14, 10
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A007814(1+n), A335915(n)]. Note that A007814(1+n) gives the number of trailing 1-bits in the binary expansion of n.
For all i, j: A324400(i) = A324400(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A000265(n) = (n>>valuation(n,2));
    A335915(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]-1)*A000265(f[k,1]+1))^f[k,2])); };
    Aux336155(n) = [A007814(1+n), A335915(n)];
    v336155 = rgs_transform(vector(up_to, n, Aux336155(n)));
    A336155(n) = v336155[n];

A336162 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A335915(i) = A335915(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 13, 5, 18, 10, 19, 3, 20, 11, 21, 6, 22, 12, 23, 2, 13, 13, 24, 7, 25, 14, 26, 4, 27, 15, 28, 8, 29, 16, 30, 1, 31, 17, 32, 9, 33, 13, 34, 5, 35, 18, 36, 10, 37, 19, 38, 3, 39, 20, 40, 11, 41, 21, 42, 6, 43, 22, 44, 12, 45, 23, 46, 2, 47, 13, 48, 13, 49, 24, 50, 7, 36
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278222(n), A335915(n)].
For all i, j: A324400(i) = A324400(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    A335915(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]-1)*A000265(f[k,1]+1))^f[k,2])); };
    Aux336162(n) = [A278222(n), A335915(n)];
    v336162 = rgs_transform(vector(up_to, n, Aux336162(n)));
    A336162(n) = v336162[n];

A336462 Numbers k for which A335915(sigma(k)) = A335915(sigma(sigma(k))).

Original entry on oeis.org

1, 2, 5, 12, 19, 24, 27, 28, 38, 39, 44, 54, 56, 59, 60, 65, 78, 83, 84, 87, 92, 95, 123, 124, 129, 133, 136, 143, 160, 167, 168, 178, 212, 223, 248, 258, 259, 266, 269, 276, 285, 288, 297, 308, 360, 393, 395, 413, 427, 429, 437, 446, 455, 473, 479, 501, 518, 522, 528, 555, 560, 581, 611, 612, 681, 738, 752, 755
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2020

Keywords

Comments

Numbers k for which A336455(k) = A336455(sigma(k)) = A336456(k).
Numbers k such that sigma(k) is in A336461.
See comments in A336464.

Crossrefs

Programs

A336464 Numbers k for which A335915(k), A335915(sigma(k)) and A335915(sigma(sigma(k))) obtain the same value.

Original entry on oeis.org

1, 2, 28, 56, 60, 84, 160, 168, 528, 12936, 32760, 102960, 1097280, 1778400, 11740302, 19183500, 25241600, 235855620, 308308000, 317167200, 424305000, 459818240, 704700000, 787200000, 924924000, 1592025435, 2701416960, 3812244480
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2020

Keywords

Comments

Numbers k for which A335915(k) = A336455(k) = A336456(k).
Numbers k such that both k and sigma(k) are in A336461.
Note that a(26) = 1592025435 (originally found by David A. Corneth) is an odd term > 1, which factorizes as 3^5 * 7^2 * 11^2 * 5 * 13 * 17, and thus is not of the form of A228058.
It appears that if we instead list k such that both k and sigma(k) are in A336458, we will not obtain more than these three terms: 1, 2, 84.

Crossrefs

Intersection of any two of these three sequences: A336461, A336462, A336463.
Showing 1-10 of 20 results. Next