cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 63 results. Next

A305801 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = 0 if n is an odd prime, with f(n) = n for all other n.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 29, 30, 3, 31, 3, 32, 33, 34, 3, 35, 36, 37, 38, 39, 3, 40, 41, 42, 43, 44, 3, 45, 3, 46, 47, 48, 49, 50, 3, 51, 52, 53, 3, 54, 3, 55, 56, 57, 58, 59, 3, 60, 61, 62, 3, 63, 64, 65, 66, 67, 3, 68, 69, 70, 71, 72, 73, 74, 3, 75, 76, 77, 3, 78, 3, 79, 80
Offset: 1

Views

Author

Antti Karttunen, Jun 14 2018

Keywords

Comments

The original name was: "Filter sequence for a(odd prime) = constant sequences", which stemmed from the fact that for all i, j, a(i) = a(j) => b(i) = b(j) for any sequence b that obtains a constant value for all odd primes A065091.
For example, we have for all i, j:
a(i) = a(j) => A305800(i) = A305800(j),
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A305891(i) = A305891(j) => A291761(i) = A291761(j).
There are several filter sequences "above" this one (meaning that they have finer equivalence class partitioning), for example, we have, for all i, j:
[where odd primes are further distinguished by]
A305900(i) = A305900(j) => a(i) = a(j), [whether p = 3 or > 3]
A319350(i) = A319350(j) => a(i) = a(j), [A007733(p)]
A319704(i) = A319704(j) => a(i) = a(j), [p mod 4]
A319705(i) = A319705(j) => a(i) = a(j), [A286622(p)]
A331304(i) = A331304(j) => a(i) = a(j), [parity of A000720(p)]
A336855(i) = A336855(j) => a(i) = a(j). [distance to the next larger prime]

Crossrefs

Cf. A305900, A319350, A319704, A319705, A331304, A336855 (sequences with finer equivalence class partitioning).
Cf. also A003602, A103391, A295300, A305795, A324400, A331300, A336460 (for similar constructions or similarly useful sequences).

Programs

  • Mathematica
    Array[If[# <= 2, #, If[PrimeQ[#], 3, 2 + # - PrimePi[#]]] &, 105] (* Michael De Vlieger, Oct 18 2021 *)
  • PARI
    A305801(n) = if(n<=2,n,if(isprime(n),3,2+n-primepi(n)));

Formula

a(1) = 1, a(2) = 2; for n > 2, a(n) = 3 for odd primes, and a(n) = 2+n-A000720(n) for composite n.
For n > 2, a(n) = 1 + A305800(n).

Extensions

Name changed and Comment section rewritten by Antti Karttunen, Oct 17 2021

A324400 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j) for all i, j >= 1, where f(n) = -1 if n = 2^k and k > 0, and f(n) = n for all other numbers.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 10, 11, 12, 13, 2, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 2, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 2, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2019

Keywords

Comments

In the following, A stands for this sequence, A324400, and S -> T (where S and T are sequence A-numbers) indicates that for all i, j >= 1: S(i) = S(i) => T(i) = T(j).
For example, the following chains of implications hold:
A -> A286619 -> A005811,
and
A -> A003602 -> A286622 -> A000120,
-> A323889,
-> A000593,
-> A001227,
among many others.

Crossrefs

Programs

  • PARI
    A000523(n) = if(n<1, 0, #binary(n)-1);
    A324400(n) = if(n<4,n,if(!bitand(n,n-1),2,1+n-A000523(n)));

Formula

If n <= 3, a(n) = n; and for n >= 4, if A209229(n) = 1, then a(n) = 2, otherwise a(n) = 1 + n - A000523(n).

A305900 Filter sequence for a(primes > 3) = constant sequences.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 5, 7, 8, 9, 5, 10, 5, 11, 12, 13, 5, 14, 5, 15, 16, 17, 5, 18, 19, 20, 21, 22, 5, 23, 5, 24, 25, 26, 27, 28, 5, 29, 30, 31, 5, 32, 5, 33, 34, 35, 5, 36, 37, 38, 39, 40, 5, 41, 42, 43, 44, 45, 5, 46, 5, 47, 48, 49, 50, 51, 5, 52, 53, 54, 5, 55, 5, 56, 57, 58, 59, 60, 5, 61, 62, 63, 5, 64, 65, 66, 67, 68, 5, 69, 70, 71, 72, 73, 74, 75, 5, 76
Offset: 1

Views

Author

Antti Karttunen, Jun 14 2018

Keywords

Comments

For all i, j:
a(i) = a(j) => A305801(i) = A305801(j) => A305800(i) = A305800(j).
a(i) = a(j) => A007949(i) = A007949(j).
a(i) = a(j) => A305893(i) = A305893(j).

Crossrefs

Cf. also A305901, A305902, A305903 (this filter applied to various permutations of N).

Programs

  • PARI
    A305900(n) = if(n<=5,n,if(isprime(n),5,3+n-primepi(n)));

Formula

For n <= 5, a(n) = n, for >= 5, a(n) = 5 when n is a prime, and a(n) = 3+n-A000720(n) when n is a composite.

A305897 Lexicographically earliest infinite sequence such that a(i) = a(j) => A348717(i) = A348717(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 6, 2, 7, 2, 8, 4, 9, 2, 10, 2, 11, 6, 12, 2, 13, 3, 14, 5, 15, 2, 16, 2, 17, 8, 18, 4, 19, 2, 20, 12, 21, 2, 22, 2, 23, 7, 24, 2, 25, 3, 26, 14, 27, 2, 28, 6, 29, 18, 30, 2, 31, 2, 32, 11, 33, 8, 34, 2, 35, 20, 36, 2, 37, 2, 38, 10, 39, 4, 40, 2, 41, 9, 42, 2, 43, 12, 44, 24, 45, 2, 46, 6, 47, 30, 48, 14, 49, 2, 50, 15, 51, 2, 52, 2, 53, 16
Offset: 1

Views

Author

Antti Karttunen, Jun 14 2018

Keywords

Comments

Restricted growth sequence transform of A348717, or equally, of A246277.
Filter sequence for prime factorization patterns, including also information about gaps between prime factors. - Original name, gives the motivation for this sequence. Here the "gaps" refers to differences between the indices of primes present, not the prime gaps as usually understood.
For all i, j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A077462(i) = A077462(j) => A101296(i) = A101296(j).
a(i) = a(j) => A243055(i) = A243055(j).

Examples

			a(10) = a(21) (= 6) because both have prime exponents [1, 1] and the difference between the prime indices is the same, as 10 = prime(1)*prime(3), and 21 = prime(2)*prime(4).
a(12) != a(18) because the prime exponents [2,1] and [1,2] do not occur in the same order.
a(140) = a(693) (= 71) because both numbers have prime exponents [2, 1, 1] (in this order) and the differences between the indices of the successive prime factors are same: 140 = prime(1)^2 * prime(3) * prime(4), 693 = prime(2)^2 * prime(4) * prime(5).
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2);
    v305897 = rgs_transform(vector(up_to,n,A246277(n)));
    A305897(n) = v305897[n];

Extensions

Name changed by Antti Karttunen, Apr 30 2022

A344025 Lexicographically earliest infinite sequence such that a(i) = a(j) => A003415(i) = A003415(j) and A003557(i) = A003557(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 21, 2, 42, 2, 43, 44, 45, 46, 47, 2, 48, 49, 50, 2, 51, 2, 52, 53, 54, 46, 55, 2, 56, 57, 58, 2, 59, 41, 60, 61, 62, 2, 63, 37, 64
Offset: 1

Views

Author

Antti Karttunen, May 07 2021

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A003415(n), A003557(n)], where A003415(n) is the arithmetic derivative of n, and A003557(n) is n divided by its largest squarefree divisor.
For all i, j:
parent(i) = parent(j) => a(i) = a(j),
a(i) = a(j) => A342001(i) = A342001(j),
a(i) = a(j) => A369051(i) = A369051(j) => A085731(i) = A085731(j).
Where "parent" can be any of the sequences A351236, A351260, A353520, A353521, A369050, for example.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    Aux344025(n) = [A003415(n), A003557(n)];
    v344025 = rgs_transform(vector(up_to, n, Aux344025(n)));
    A344025(n) = v344025[n];

A329045 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(A329044(i)) = A046523(A329044(j)) for all i, j.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 4, 3, 2, 5, 2, 3, 6, 7, 2, 7, 2, 5, 6, 3, 2, 8, 9, 3, 4, 5, 2, 10, 2, 4, 6, 3, 11, 12, 2, 3, 6, 4, 2, 4, 2, 5, 10, 3, 2, 8, 13, 14, 6, 5, 2, 7, 9, 15, 6, 3, 2, 16, 2, 3, 16, 7, 17, 18, 2, 5, 6, 19, 2, 20, 2, 3, 21, 5, 22, 18, 2, 7, 13, 3, 2, 7, 23, 3, 6, 15, 2, 24, 25, 5, 6, 3, 26, 27, 2, 28, 24, 13, 2, 18, 2, 15, 29
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2019

Keywords

Comments

Restricted growth sequence transform of function f(n) = A046523(A329044(n)).
For all i, j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A324888(i) = A324888(j),
a(i) = a(j) => A329046(i) = A329046(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A324886(n) = A276086(A108951(n));
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A329044(n) = A064989(A324886(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    v329045 = rgs_transform(vector(up_to, n, A046523(A329044(n))));
    A329045(n) = v329045[n];

A329345 Lexicographically earliest infinite sequence such that a(i) = a(j) => A246277(A329044(i)) = A246277(A329044(j)) for all i, j.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 4, 3, 2, 5, 2, 3, 6, 7, 2, 7, 2, 5, 6, 3, 2, 8, 9, 3, 10, 5, 2, 11, 2, 10, 6, 3, 12, 13, 2, 3, 6, 4, 2, 4, 2, 5, 14, 3, 2, 15, 16, 17, 6, 5, 2, 18, 19, 20, 6, 3, 2, 21, 2, 3, 21, 18, 22, 23, 2, 5, 6, 24, 2, 25, 2, 3, 26, 5, 27, 23, 2, 7, 28, 3, 2, 7, 29, 3, 6, 20, 2, 30, 31, 5, 6, 3, 32, 33, 2, 34, 35, 16, 2, 23, 2, 20, 36
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2019

Keywords

Comments

Restricted growth sequence transform of function f(n) = A246277(A329044(n)).
For all i, j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A329045(i) = A329045(j),
a(i) = a(j) => A329343(i) = A329343(j),
a(i) = a(j) => A329348(i) = A329348(j),
a(i) = a(j) => A329349(i) = A329349(j).

Crossrefs

Programs

  • PARI
    up_to = 1024;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A324886(n) = A276086(A108951(n));
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A329044(n) = A064989(A324886(n));
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2);
    v329345 = rgs_transform(vector(up_to, n, A246277(A329044(n))));
    A329345(n) = v329345[n];

A300223 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j) and A296091(i) = A296091(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 4, 2, 7, 2, 4, 4, 8, 2, 9, 2, 10, 4, 11, 2, 12, 13, 4, 5, 9, 2, 14, 2, 15, 4, 4, 4, 16, 2, 4, 11, 12, 2, 17, 2, 10, 9, 4, 2, 18, 19, 20, 4, 10, 2, 21, 4, 21, 4, 4, 2, 22, 2, 11, 10, 23, 4, 17, 2, 7, 11, 17, 2, 24, 2, 4, 9, 10, 11, 14, 2, 18, 25, 26, 2, 22, 4, 4, 11, 12, 2, 22, 11, 10, 4, 11, 11, 27, 2, 28, 9, 29, 2, 17, 2, 21, 14
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A046523(n), A296091(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A296091(n) = if(1==n,n,A046523(sigma(n)-1));
    Aux300223(n) = (1/2)*(2 + ((A046523(n)+A296091(n))^2) - A046523(n) - 3*A296091(n));
    v300223 = rgs_transform(vector(up_to,n,Aux300223(n)));
    A300223(n) = v300223[n];

Extensions

Name changed by Antti Karttunen, May 20 2022

A351236 Lexicographically earliest infinite sequence such that a(i) = a(j) => A344025(i) = A344025(j) and A351085(i) = A351085(j) for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 21, 2, 42, 2, 43, 44, 45, 46, 47, 2, 48, 49, 50, 2, 51, 2, 52, 53, 54, 46, 55, 2, 56, 57, 58, 2, 59, 41, 60, 61, 62, 2, 63, 64, 65
Offset: 1

Views

Author

Antti Karttunen, Feb 06 2022

Keywords

Comments

Restricted growth sequence transform of the 4-tuple [A003415(n), A003557(n), A327858(n), A345000(n)].
Question: If an image-analysis algorithm were to classify the scatter plot of this sequence, where it would cluster it? Nearer to A344025 than to A351085?

Crossrefs

Differs from A344025 for the first time at n=91, where a(91) = 64, while A344025(91) = 37.
Cf. also A305800, A351235, A351260.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327858(n) = gcd(A003415(n),A276086(n));
    A345000(n) = gcd(A003415(n),A003415(A276086(n)));
    Aux351236(n) = [A003415(n), A003557(n), A327858(n), A345000(n)];
    v351236 = rgs_transform(vector(up_to, n, Aux351236(n)));
    A351236(n) = v351236[n];

A296073 Filter combining A296071(n) and A296072(n), related to the deficiencies of proper divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 40, 41, 42, 43, 2, 44, 2, 45, 46, 47, 48, 49, 2, 50, 51, 52, 2, 53, 2, 54, 55, 56, 57, 58, 2, 59, 60, 61, 2, 62, 63, 64, 65, 66, 2, 67, 68, 69, 70, 71, 72, 73, 2, 74, 75, 76, 2, 77, 2, 78, 79, 80, 2, 81, 2, 82, 83, 84, 2, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 33
Offset: 1

Views

Author

Antti Karttunen, Dec 04 2017

Keywords

Comments

Construction: Pack the values of A296071(n) and A296072(n) to a single value with any injective N x N -> N packing function, like for example as f(n) = (1/2)*(2 + ((A296071(n)+A296072(n))^2) - A296071(n) - 3*A296072(n)) (the packing function here is the two-argument form of A000027). Then apply the restricted growth sequence transform to the sequence f(1), f(2), f(3), ... The transform assigns a unique increasing number for each newly encountered term of the sequence, and for any subsequent occurrences of the same term it gives the same number that term obtained for the first time.
For all i, j: a(i) = a(j) => A296074(i) = A296074(j).
Note that this is NOT restricted growth transform of A239968, which is A305800. Apart from 2's that occur at every prime, there are other duplicates also, first at a(125) = a(46) = 33.

Examples

			To see that a(46) and a(125) have the same value (33), consider the proper divisors of 46 = 1, 2, 23 and of 125 = 1, 5, 25. Their deficiencies are 1, 1, 22 and 1, 4, 19 respectively. When we look at their balanced ternary representations [as here all elements are positive, it can be obtained as A007089(A117967(n)) with 2's standing for -1's]:
   1 =    1
   1 =    1
  22 = 1211 (as 22 = 1*(3^3) + -1*(3^2) + 1*(3^1) + 1*(3^0))
and
   1 =    1
   4 =   11
  19 = 1201 (as 19 = 1*(3^3) + -1*(3^2) + 0*(3^1) + 1*(3^0)).
we see that in each column there is an equal number of 1's and an equal number of 2's. Moreover, this then implies also that the sums of those two sequences of deficiencies {1, 1, 22} and {1, 4, 19} are equal, as A296074(n) is a function of (can be computed from) a(n).
		

Crossrefs

Cf. also A293226.
Differs from A305800 for the first time at n=125.

Programs

  • PARI
    up_to = 65536;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A117967(n) = if(n<=1,n,if(!(n%3),3*A117967(n/3),if(1==(n%3),1+3*A117967((n-1)/3),2+3*A117967((n+1)/3))));
    A117968(n) = if(1==n,2,if(!(n%3),3*A117968(n/3),if(1==(n%3),2+3*A117968((n-1)/3),1+3*A117968((n+1)/3))));
    A289813(n) = { my (d=digits(n, 3)); from digits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From Rémy Sigrist
    A289814(n) = { my (d=digits(n, 3)); from digits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From Rémy Sigrist
    A295882(n) = { my(x = (2*n)-sigma(n)); if(x >= 0,A117967(x),A117968(-x)); };
    A296071(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(A289813(A295882(d))))); m; };
    A296072(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(A289814(A295882(d))))); m; };
    Anotsubmitted3(n) = (1/2)*(2 + ((A296071(n)+A296072(n))^2) - A296071(n) - 3*A296072(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Anotsubmitted3(n))),"b296073.txt");

Extensions

Data section extended up to a(125) by Antti Karttunen, Jun 14 2018
Showing 1-10 of 63 results. Next