A305801 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = 0 if n is an odd prime, with f(n) = n for all other n.
1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 29, 30, 3, 31, 3, 32, 33, 34, 3, 35, 36, 37, 38, 39, 3, 40, 41, 42, 43, 44, 3, 45, 3, 46, 47, 48, 49, 50, 3, 51, 52, 53, 3, 54, 3, 55, 56, 57, 58, 59, 3, 60, 61, 62, 3, 63, 64, 65, 66, 67, 3, 68, 69, 70, 71, 72, 73, 74, 3, 75, 76, 77, 3, 78, 3, 79, 80
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
Crossrefs
Cf. A305900, A319350, A319704, A319705, A331304, A336855 (sequences with finer equivalence class partitioning).
Cf. A305800, A305890, A305891, A305896, A318500, A318888, A319346, A319347, A319349, A319701, A322591, A322809, A322810, A323078, A323367, A323082, A323369, A323370, A323371, A323374, A323400, A324401, A326199, A326201, A326203, A326203, A328470, A329608, A331174, A331730, A331301 (sequences with coarser equivalence class partitioning).
Programs
-
Mathematica
Array[If[# <= 2, #, If[PrimeQ[#], 3, 2 + # - PrimePi[#]]] &, 105] (* Michael De Vlieger, Oct 18 2021 *)
-
PARI
A305801(n) = if(n<=2,n,if(isprime(n),3,2+n-primepi(n)));
Formula
Extensions
Name changed and Comment section rewritten by Antti Karttunen, Oct 17 2021
Comments