cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A295300 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A003557(n), A046523(n), A048250(n)].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 44, 49, 50, 51, 44, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 58, 62, 65, 66, 67, 68, 69, 70, 58, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 80
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2017

Keywords

Comments

Restricted growth sequence transform of A291752.
For all i, j:
a(i) = a(j) => A291751(i) = A291751(j),
a(i) = a(j) => A326199(i) = A326199(j) => A294877(i) = A294877(j),
a(i) = a(j) => A322021(i) = A322021(j),
a(i) = a(j) => A295888(i) = A295888(j),
a(i) = a(j) => A296090(i) = A296090(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    Aux295300(n) = (1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n));
    v295300 = rgs_transform(vector(up_to,n,Aux295300(n)));
    A295300(n) = v295300[n];

Extensions

Name changed and the comments section added by Antti Karttunen, Jul 13 2019

A300223 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j) and A296091(i) = A296091(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 4, 2, 7, 2, 4, 4, 8, 2, 9, 2, 10, 4, 11, 2, 12, 13, 4, 5, 9, 2, 14, 2, 15, 4, 4, 4, 16, 2, 4, 11, 12, 2, 17, 2, 10, 9, 4, 2, 18, 19, 20, 4, 10, 2, 21, 4, 21, 4, 4, 2, 22, 2, 11, 10, 23, 4, 17, 2, 7, 11, 17, 2, 24, 2, 4, 9, 10, 11, 14, 2, 18, 25, 26, 2, 22, 4, 4, 11, 12, 2, 22, 11, 10, 4, 11, 11, 27, 2, 28, 9, 29, 2, 17, 2, 21, 14
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A046523(n), A296091(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A296091(n) = if(1==n,n,A046523(sigma(n)-1));
    Aux300223(n) = (1/2)*(2 + ((A046523(n)+A296091(n))^2) - A046523(n) - 3*A296091(n));
    v300223 = rgs_transform(vector(up_to,n,Aux300223(n)));
    A300223(n) = v300223[n];

Extensions

Name changed by Antti Karttunen, May 20 2022

A295888 Filter combining prime signature of n (A101296) with Dedekind's psi (A001615).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 41, 42, 43, 44, 45, 46, 42, 47, 48, 49, 42, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 56, 60, 63, 64, 65, 66, 67, 67, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 77
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2017

Keywords

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d)); \\ This function from Charles R Greathouse IV, Sep 09 2014
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    Anotsubmitted8(n) = (1/2)*(2 + ((A046523(n)+A001615(n))^2) - A046523(n) - 3*A001615(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Anotsubmitted8(n))),"b295888.txt");

Formula

Restricted growth sequence transform of function f(n) = (1/2)*(2 + ((A046523(n) + A001615(n))^2) - A046523(n) - 3*A001615(n)), where values A046523(n) and A001615(n) are packed together to a(n) with the 2-argument form of A000027, also known as Cantor pairing-function.

A296089 Filter combining the sum of divisors (A000203) and 2-adic valuation of n (A007814); restricted growth sequence transform of A286460.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 24, 25, 26, 27, 28, 29, 21, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 29, 31, 43, 44, 45, 46, 47, 48, 49, 46, 50, 51, 52, 53, 54, 55, 39, 56, 57, 58, 59, 60, 61, 62, 59, 46, 63, 64, 65, 66, 67, 62, 68, 51, 69, 70, 71, 58, 72, 73, 74, 75, 76, 77, 78, 79, 54, 80, 59, 75
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2017

Keywords

Comments

This seems to be also the restricted growth sequence transform of A286359.
For all i, j:
a(i) = a(j) => A296088(i) = A296088(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A000203(n) = sigma(n);
    A001511(n) = (1+valuation(n,2));
    A286460(n) = (1/2)*(2 + ((A001511(n)+A000203(n))^2) - A001511(n) - 3*A000203(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,A286460(n))),"b296089.txt");
Showing 1-4 of 4 results.