cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A323368 Lexicographically earliest sequence such that a(i) = a(j) => A000035(i) = A000035(j) and A003557(i) = A003557(j) and A048250(i) = A048250(j), for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 24, 25, 26, 27, 28, 29, 21, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 29, 31, 43, 44, 45, 46, 47, 48, 49, 46, 50, 51, 52, 53, 54, 55, 39, 56, 57, 58, 59, 60, 61, 62, 59, 46, 63, 64, 65, 66, 67, 62, 68, 51, 69, 70, 71, 58, 72, 73, 74, 75, 76, 77, 78, 79, 54, 80, 59, 75, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2019

Keywords

Comments

For all i, j:
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A291751(i) = A291751(j),
a(i) = a(j) => A296089(i) = A296089(j),
a(i) = a(j) => A323238(i) = A323238(j).

Crossrefs

Differs from A296089 for the first time at n=103, where a(103)=88, while A296089(103)=56.
Cf. also A323366.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    v323368 = rgs_transform(vector(up_to, n, [(n%2), A003557(n), A048250(n)]));
    A323368(n) = v323368[n];

A296090 Filter combining the sum of divisors (A000203) and prime-signature (A101296) of n; restricted growth sequence transform of A286360.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 44, 49, 50, 51, 44, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 57, 61, 64, 65, 66, 67, 68, 69, 57, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 79
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2017

Keywords

Comments

For all i, j:
a(i) = a(j) => A286034(i) = A286034(j).
a(i) = a(j) => A295880(i) = A295880(j).

Crossrefs

Differs from related A295880 for the first time at n=135, where a(135) = 123, while A295880(135) = 104.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A000203(n) = sigma(n);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286360(n) = (1/2)*(2 + ((A046523(n)+A000203(n))^2) - A046523(n) - 3*A000203(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,A286360(n))),"b296090.txt");

A296088 Filter combining sigma(n) with the parity of n; restricted growth sequence transform of ((-1)^n)*A000203(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 24, 20, 25, 26, 27, 28, 21, 29, 30, 31, 30, 32, 33, 23, 34, 35, 36, 37, 38, 39, 40, 28, 30, 41, 42, 43, 44, 45, 46, 47, 44, 47, 48, 35, 49, 50, 51, 37, 52, 53, 54, 55, 56, 57, 58, 55, 44, 59, 60, 61, 62, 63, 58, 50, 48, 64, 65, 57, 54, 66, 67, 68, 69, 70, 71, 72, 73, 50, 74, 55, 69
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2017

Keywords

Examples

			For n = 21 and 31 the restricted growth sequence transform assigns the same value (we have a(21) = a(31) = 21) because both numbers are odd, and the sum of their divisors is equal as sigma(21) = sigma(31) = 32.
On the other hand, although sigma(14) = sigma(15) = 24, a(14) != a(15) because the other number is even and the other number is odd. Compare to A286603.
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    write_to_bfile(1,rgs_transform(vector(up_to,n,((-1)^n)*sigma(n))),"b296088.txt");

A369259 Lexicographically earliest infinite sequence such that a(i) = a(j) => A003557(i) = A003557(j), A048250(i) = A048250(j) and A342671(i) = A342671(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 24, 25, 26, 27, 28, 29, 21, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 29, 31, 43, 44, 45, 46, 47, 48, 49, 46, 50, 51, 52, 53, 54, 55, 39, 56, 57, 58, 59, 60, 61, 62, 59, 46, 63, 64, 65, 66, 67, 62, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 59
Offset: 1

Views

Author

Antti Karttunen, Jan 25 2024

Keywords

Comments

Restricted growth sequence transform of the triplet [A003557(j), A048250(i), A342671(n)].
For all i, j >= 1:
a(i) = a(j) => A323368(i) = A323368(j) => A291751(i) = A291751(j),
a(i) = a(j) => A369260(i) = A369260(j) => A286603(i) = A286603(j).

Crossrefs

Differs from related A296089 and A323368 for the first time at n=79, where a(79) = 69, while A296089(79) = A323368(79) = 51.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = (n/factorback(factor(n)[, 1]));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A342671(n) = gcd(sigma(n), A003961(n));
    Aux369259(n) = [A003557(n), A048250(n), A342671(n)];
    v369259 = rgs_transform(vector(up_to, n, Aux369259(n)));
    A369259(n) = v369259[n];
Showing 1-4 of 4 results.