A370900 Partial sums of the powerfree part function (A055231).
1, 3, 6, 7, 12, 18, 25, 26, 27, 37, 48, 51, 64, 78, 93, 94, 111, 113, 132, 137, 158, 180, 203, 206, 207, 233, 234, 241, 270, 300, 331, 332, 365, 399, 434, 435, 472, 510, 549, 554, 595, 637, 680, 691, 696, 742, 789, 792, 793, 795, 846, 859, 912, 914, 969, 976, 1033
Offset: 1
References
- Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 52.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eckford Cohen, An elementary method in the asymptotic theory of numbers, Duke Mathematical Journal, Vol. 28, No. 2 (1961), pp. 183-192.
- Eckford Cohen, Some asymptotic formulas in the theory of numbers, Transactions of the American Mathematical Society, Vol. 112, No. 2 (1964), pp. 214-227.
- László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
Programs
-
Mathematica
f[p_, e_] := If[e == 1, p, 1]; pfp[n_] := Times @@ f @@@ FactorInteger[n]; pfp[1] = 1; Accumulate[Array[pfp[#] &, 100]]
-
PARI
pfp(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, f[i, 1], 1));} lista(kmax) = {my(s = 0); for(k = 1, kmax, s += pfp(k); print1(s, ", "))};
Formula
a(n) = Sum_{k=1..n} A055231(k).
a(n) = c * n^2 / 2 + O(R(n)), where c = Product_{p prime} (1 - (p^2+p-1)/(p^3*(p+1))) = 0.649606699337... (A191622), R(n) = x^(3/2) * exp(-c_1 * log(n)^(3/5) / log(log(n))^(1/5)) unconditionally, or x^(7/5) * exp(c_2 * log(n) / log(log(n))) assuming the Riemann hypothesis, and c_1 and c_2 are positive constants (Tóth, 2017).
Comments